Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Specific activity

From Wikipedia, the free encyclopedia
Activity per unit mass of a radionuclide
This article is about specific activity radioactivity. For the use in biochemistry, seeEnzyme assay § Specific activity.
This articlemay be too technical for most readers to understand. Pleasehelp improve it tomake it understandable to non-experts, without removing the technical details.(January 2014) (Learn how and when to remove this message)
Activity
Ra 226 radiation source. Activity 3300 Bq (3.3 kBq)
Common symbols
A
SI unitbecquerel
Other units
rutherford,curie
InSI base unitss−1
Specific activity
Common symbols
a
SI unitbecquerel perkilogram
Other units
rutherford pergram,curie per gram
InSI base unitss−1⋅kg−1

Specific activity (symbola) is the activityper unit mass of aradionuclide and is a physical property of that radionuclide.[1][2]It is usually given in units of becquerel per kilogram (Bq/kg), but another commonly used unit of specific activity is the curie per gram (Ci/g).

In the context ofradioactivity, activity or total activity (symbolA) is aphysical quantity defined as the number of radioactive transformations per second that occur in a particularradionuclide.[3] The unit of activity is thebecquerel (symbol Bq), which is defined equivalent toreciprocal seconds (symbol s−1). The older, non-SI unit of activity is thecurie (Ci), which is3.7×1010 radioactive decays per second. Another unit of activity is therutherford, which is defined as1×106 radioactive decays per second.

The specific activity should not be confused with level of exposure toionizing radiation and thus the exposure orabsorbed dose, which is the quantity important in assessing the effects of ionizing radiation on humans.

Since the probability ofradioactive decay for a given radionuclide within a set time interval is fixed (with some slight exceptions, seechanging decay rates), the number of decays that occur in a given time of a given mass (and hence a specific number of atoms) of that radionuclide is also a fixed (ignoring statistical fluctuations).

Formulation

[edit]
See also:Radioactive decay § Rates

Relationship betweenλ and T1/2

[edit]

Radioactivity is expressed as the decay rate of a particular radionuclide with decay constantλ and the number of atomsN:

dNdt=λN.{\displaystyle -{\frac {dN}{dt}}=\lambda N.}

The integral solution is described byexponential decay:

N=N0eλt,{\displaystyle N=N_{0}e^{-\lambda t},}

whereN0 is the initial quantity of atoms at timet = 0.

Half-lifeT1/2 is defined as the length of time for half of a given quantity of radioactive atoms to undergo radioactive decay:

N02=N0eλT1/2.{\displaystyle {\frac {N_{0}}{2}}=N_{0}e^{-\lambda T_{1/2}}.}

Taking the natural logarithm of both sides, the half-life is given by

T1/2=ln2λ.{\displaystyle T_{1/2}={\frac {\ln 2}{\lambda }}.}

Conversely, the decay constantλ can be derived from the half-lifeT1/2 as

λ=ln2T1/2.{\displaystyle \lambda ={\frac {\ln 2}{T_{1/2}}}.}

Calculation of specific activity

[edit]

The mass of the radionuclide is given by

m=NNA[mol]×M[g/mol],{\displaystyle {m}={\frac {N}{N_{\text{A}}}}[{\text{mol}}]\times {M}[{\text{g/mol}}],}

whereM ismolar mass of the radionuclide, andNA is theAvogadro constant. Practically, themass numberA of the radionuclide is within a fraction of 1% of the molar mass expressed in g/mol and can be used as an approximation.

Specific radioactivitya is defined as radioactivity per unit mass of the radionuclide:

a[Bq/g]=λNMN/NA=λNAM.{\displaystyle a[{\text{Bq/g}}]={\frac {\lambda N}{MN/N_{\text{A}}}}={\frac {\lambda N_{\text{A}}}{M}}.}

Thus, specific radioactivity can also be described by

a=NAln2T1/2×M.{\displaystyle a={\frac {N_{\text{A}}\ln 2}{T_{1/2}\times M}}.}

This equation is simplified to

a[Bq/g]4.17×1023[mol1]T1/2[s]×M[g/mol].{\displaystyle a[{\text{Bq/g}}]\approx {\frac {4.17\times 10^{23}[{\text{mol}}^{-1}]}{T_{1/2}[s]\times M[{\text{g/mol}}]}}.}

When the unit of half-life is in years instead of seconds:

a[Bq/g]=4.17×1023[mol1]T1/2[year]×365×24×60×60[s/year]×M1.32×1016[mol1s1year]T1/2[year]×M[g/mol].{\displaystyle a[{\text{Bq/g}}]={\frac {4.17\times 10^{23}[{\text{mol}}^{-1}]}{T_{1/2}[{\text{year}}]\times 365\times 24\times 60\times 60[{\text{s/year}}]\times M}}\approx {\frac {1.32\times 10^{16}[{\text{mol}}^{-1}{\cdot }{\text{s}}^{-1}{\cdot }{\text{year}}]}{T_{1/2}[{\text{year}}]\times M[{\text{g/mol}}]}}.}

Example: specific activity of Ra-226

[edit]

For example, specific radioactivity ofradium-226 with a half-life of 1600 years is obtained as

aRa-226[Bq/g]=1.32×10161600×2263.7×1010[Bq/g].{\displaystyle a_{\text{Ra-226}}[{\text{Bq/g}}]={\frac {1.32\times 10^{16}}{1600\times 226}}\approx 3.7\times 10^{10}[{\text{Bq/g}}].}

This value derived from radium-226 was defined as unit of radioactivity known as thecurie (Ci).

Calculation of half-life from specific activity

[edit]

Experimentally measured specific activity can be used to calculate thehalf-life of a radionuclide.

Where decay constantλ is related to specific radioactivitya by the following equation:

λ=a×MNA.{\displaystyle \lambda ={\frac {a\times M}{N_{\text{A}}}}.}

Therefore, the half-life can also be described by

T1/2=NAln2a×M.{\displaystyle T_{1/2}={\frac {N_{\text{A}}\ln 2}{a\times M}}.}

Example: half-life of Rb-87

[edit]

One gram ofrubidium-87 and a radioactivity count rate that, after takingsolid angle effects into account, is consistent with a decay rate of 3200 decays per second corresponds to a specific activity of3.2×106 Bq/kg. Rubidiumatomic mass is 87 g/mol, so one gram is 1/87 of a mole. Plugging in the numbers:

T1/2=NA×ln2a×M6.022×1023 mol1×0.6933200 s1g1×87 g/mol1.5×1018 s47 billion years.{\displaystyle T_{1/2}={\frac {N_{\text{A}}\times \ln 2}{a\times M}}\approx {\frac {6.022\times 10^{23}{\text{ mol}}^{-1}\times 0.693}{3200{\text{ s}}^{-1}{\cdot }{\text{g}}^{-1}\times 87{\text{ g/mol}}}}\approx 1.5\times 10^{18}{\text{ s}}\approx 47{\text{ billion years}}.}

Other calculations

[edit]
This section may need to be cleaned up. It has been merged fromBecquerel.

For a given massm{\displaystyle m} (in grams) of an isotope withatomic massma{\displaystyle m_{\text{a}}} (in g/mol) and ahalf-life oft1/2{\displaystyle t_{1/2}} (in s), the radioactivity can be calculated using:

ABq=mmaNAln2t1/2{\displaystyle A_{\text{Bq}}={\frac {m}{m_{\text{a}}}}N_{\text{A}}{\frac {\ln 2}{t_{1/2}}}}

WithNA{\displaystyle N_{\text{A}}} =6.02214076×1023 mol−1, theAvogadro constant.

Sincem/ma{\displaystyle m/m_{\text{a}}} is the number of moles (n{\displaystyle n}), the amount of radioactivityA{\displaystyle A} can be calculated by:

ABq=nNAln2t1/2{\displaystyle A_{\text{Bq}}=nN_{\text{A}}{\frac {\ln 2}{t_{1/2}}}}

For instance, on average each gram ofpotassium contains 117 micrograms of40K (all other naturally occurring isotopes are stable) that has at1/2{\displaystyle t_{1/2}} of1.277×109 years =4.030×1016 s,[4] and has an atomic mass of 39.964 g/mol,[5] so the amount of radioactivity associated with a gram of potassium is 30 Bq.

Examples

[edit]
IsotopeHalf-lifeMass of 1 curieSpecific Activity (a) (activity per 1 kg)
232Th1.405×1010 years9.1 tonnes4.07 MBq (110 μCi or 4.07 Rd)
238U4.471×109 years2.977 tonnes12.58 MBq (340 μCi, or 12.58 Rd)
235U7.038×108 years463 kg79.92 MBq (2.160 mCi, or 79.92 Rd)
40K1.25×109 years140 kg262.7 MBq (7.1 mCi, or 262.7 Rd)
129I15.7×106 years5.66 kg6.66 GBq (180 mCi, or 6.66 kRd)
99Tc211×103 years58 g629 GBq (17 Ci, or 629 kRd)
239Pu24.11×103 years16 g2.331 TBq (63 Ci, or 2.331 MRd)
240Pu6563 years4.4 g8.51 TBq (230 Ci, or 8.51MRd)
14C5730 years0.22 g166.5 TBq (4.5 kCi, or 166.5 MRd)
226Ra1601 years1.01 g36.63 TBq (990 Ci, or 36.63 MRd)
241Am432.6 years0.29 g126.91 TBq (3.43 kCi, or 126.91 MRd)
238Pu88 years59 mg629 TBq (17 kCi, or 629 MRd)
137Cs30.17 years12 mg3.071 PBq (83 kCi, or 3.071 GRd)
90Sr28.8 years7.2 mg5.143 PBq (139 kCi, or 5.143 GRd)
241Pu14 years9.4 mg3.922 PBq (106 kCi, or 3.922 GRd)
3H12.32 years104 μg355.977 PBq (9.621 MCi, or 355.977 GRd)
228Ra5.75 years3.67 mg10.101 PBq (273 kCi, or 10.101 GRd)
60Co1925 days883 μg41.884 PBq (1.132 MCi, or 41.884 GRd)
210Po138 days223 μg165.908 PBq (4.484 MCi, or 165.908 GRd)
131I8.02 days8 μg4.625 EBq (125 MCi, or 4.625 TRd)
123I13 hours518 ng71.41 EBq (1.93 GCi, or 71.41 TRd)
212Pb10.64 hours719 ng51.43 EBq (1.39 GCi, or 51.43 TRd)

Applications

[edit]

The specific activity of radionuclides is particularly relevant when it comes to select them for production for therapeutic pharmaceuticals, as well as forimmunoassays or other diagnostic procedures, or assessing radioactivity in certain environments, among several other biomedical applications.[6][7][8][9][10][11]

References

[edit]
  1. ^Breeman, Wouter A. P.; Jong, Marion; Visser, Theo J.; Erion, Jack L.; Krenning, Eric P. (2003). "Optimising conditions for radiolabelling of DOTA-peptides with90Y,111In and177Lu at high specific activities".European Journal of Nuclear Medicine and Molecular Imaging.30 (6):917–920.doi:10.1007/s00259-003-1142-0.ISSN 1619-7070.PMID 12677301.S2CID 9652140.
  2. ^de Goeij, J. J. M.; Bonardi, M. L. (2005). "How do we define the concepts specific activity, radioactive concentration, carrier, carrier-free and no-carrier-added?".Journal of Radioanalytical and Nuclear Chemistry.263 (1):13–18.doi:10.1007/s10967-005-0004-6.ISSN 0236-5731.S2CID 97433328.
  3. ^"SI units for ionizing radiation: becquerel".Resolutions of the 15th CGPM (Resolution 8). 1975. Retrieved3 July 2015.
  4. ^"Table of Isotopes decay data".Lund University. 1990-06-01. Retrieved2014-01-12.
  5. ^"Atomic Weights and Isotopic Compositions for All Elements".NIST. Retrieved2014-01-12.
  6. ^Duursma, E. K. "Specific activity of radionuclides sorbed by marine sediments in relation to the stable element composition". Radioactive contamination of the marine environment (1973): 57–71.
  7. ^Wessels, Barry W. (1984). "Radionuclide selection and model absorbed dose calculations for radiolabeled tumor associated antibodies".Medical Physics.11 (5):638–645.Bibcode:1984MedPh..11..638W.doi:10.1118/1.595559.ISSN 0094-2405.PMID 6503879.
  8. ^I. Weeks; I. Beheshti; F. McCapra; A. K. Campbell; J. S. Woodhead (August 1983). "Acridinium esters as high-specific-activity labels in immunoassay".Clinical Chemistry.29 (8):1474–1479.doi:10.1093/clinchem/29.8.1474.PMID 6191885.
  9. ^Neves, M.; Kling, A.; Lambrecht, R. M. (2002). "Radionuclide production for therapeutic radiopharmaceuticals".Applied Radiation and Isotopes.57 (5):657–664.CiteSeerX 10.1.1.503.4385.doi:10.1016/S0969-8043(02)00180-X.ISSN 0969-8043.PMID 12433039.
  10. ^Mausner, Leonard F. (1993). "Selection of radionuclides for radioimmunotherapy".Medical Physics.20 (2):503–509.Bibcode:1993MedPh..20..503M.doi:10.1118/1.597045.ISSN 0094-2405.PMID 8492758.
  11. ^Murray, A. S.; Marten, R.; Johnston, A.; Martin, P. (1987). "Analysis for naturally occuring [sic] radionuclides at environmental concentrations by gamma spectrometry".Journal of Radioanalytical and Nuclear Chemistry.115 (2):263–288.doi:10.1007/BF02037443.ISSN 0236-5731.S2CID 94361207.

Further reading

[edit]
Activity (A)
Exposure (X)
Absorbed dose (D)
Equivalent dose (H)
Effective dose (E)
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Specific_activity&oldid=1284076270"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp