Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Special unitary group

From Wikipedia, the free encyclopedia
(Redirected fromSU(6))
Group of unitary matrices with determinant of 1
"SU(5)" redirects here. For the specific grand unification theory, seeGeorgi–Glashow model.
Algebraic structureGroup theory
Group theory
Lie groups andLie algebras

In mathematics, thespecial unitary group of degreen, denotedSU(n), is theLie group ofn ×nunitary matrices withdeterminant 1.

Thematrices of the more generalunitary group may havecomplex determinants with absolute value 1, rather than real 1 in the special case.

The group operation ismatrix multiplication. The special unitary group is anormal subgroup of theunitary groupU(n), consisting of alln×n unitary matrices. As acompact classical group,U(n) is the group that preserves thestandard inner product onCn{\displaystyle \mathbb {C} ^{n}}.[a] It is itself a subgroup of thegeneral linear group,SU(n)U(n)GL(n,C).{\displaystyle \operatorname {SU} (n)\subset \operatorname {U} (n)\subset \operatorname {GL} (n,\mathbb {C} ).}

TheSU(n) groups find wide application in theStandard Model ofparticle physics, especiallySU(2) in theelectroweak interaction andSU(3) inquantum chromodynamics.[1]

The simplest case,SU(1), is thetrivial group, having only a single element. The groupSU(2) isisomorphic to the group ofquaternions ofnorm 1, and is thusdiffeomorphic to the3-sphere. Sinceunit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is asurjectivehomomorphism fromSU(2) to therotation groupSO(3) whosekernel is{+I, −I}.[b] Since the quaternions can be identified as the even subalgebra of the Clifford AlgebraCl(3),SU(2) is in fact identical to one of the symmetry groups ofspinors,Spin(3), that enables a spinor presentation of rotations.

Properties

[edit]

The special unitary groupSU(n) is a strictly realLie group (vs. a more generalcomplex Lie group). Its dimension as areal manifold isn2 − 1. Topologically, it iscompact andsimply connected.[2] Algebraically, it is asimple Lie group (meaning itsLie algebra is simple; see below).[3]

Thecenter ofSU(n) is isomorphic to thecyclic groupZ/nZ{\displaystyle \mathbb {Z} /n\mathbb {Z} }, and is composed of the diagonal matricesζI forζ annth root of unity andI then ×n identity matrix.

Itsouter automorphism group forn ≥ 3 isZ/2Z,{\displaystyle \mathbb {Z} /2\mathbb {Z} ,} while the outer automorphism group ofSU(2) is thetrivial group.

Amaximal torus ofrankn − 1 is given by the set of diagonal matrices with determinant1. TheWeyl group ofSU(n) is thesymmetric groupSn, which is represented bysigned permutation matrices (the signs being necessary to ensure that the determinant is1).

TheLie algebra ofSU(n), denoted bysu(n){\displaystyle {\mathfrak {su}}(n)}, can be identified with the set oftracelessanti‑Hermitiann ×n complex matrices, with the regularcommutator as a Lie bracket.Particle physicists often use a different, equivalent representation: The set of tracelessHermitiann ×n complex matrices with Lie bracket given byi times the commutator.

Lie algebra

[edit]
Main article:Classical group § U(p, q) and U(n) – the unitary groups

The Lie algebrasu(n){\displaystyle {\mathfrak {su}}(n)} ofSU(n){\displaystyle \operatorname {SU} (n)} consists ofn ×nskew-Hermitian matrices with trace zero.[4] This (real) Lie algebra has dimensionn2 − 1. More information about the structure of this Lie algebra can be found below in§ Lie algebra structure.

Fundamental representation

[edit]

In the physics literature, it is common to identify the Lie algebra with the space of trace-zeroHermitian (rather than the skew-Hermitian) matrices. That is to say, the physicists' Lie algebra differs by a factor ofi{\displaystyle i} from the mathematicians'. With this convention, one can then choose generatorsTa that aretracelessHermitian complexn ×n matrices, where:

TaTb=12nδabIn+12c=1n21(ifabc+dabc)Tc{\displaystyle T_{a}\,T_{b}={\tfrac {1}{\,2n\,}}\,\delta _{ab}\,I_{n}+{\tfrac {1}{2}}\,\sum _{c=1}^{n^{2}-1}\left(if_{abc}+d_{abc}\right)\,T_{c}}

where thef are thestructure constants and are antisymmetric in all indices, while thed-coefficients are symmetric in all indices.

As a consequence, the commutator is:

 [Ta,Tb] = ic=1n21fabcTc,{\displaystyle ~\left[T_{a},\,T_{b}\right]~=~i\sum _{c=1}^{n^{2}-1}\,f_{abc}\,T_{c}\;,}

and the corresponding anticommutator is:

{Ta,Tb} = 1nδabIn+c=1n21dabcTc .{\displaystyle \left\{T_{a},\,T_{b}\right\}~=~{\tfrac {1}{n}}\,\delta _{ab}\,I_{n}+\sum _{c=1}^{n^{2}-1}{d_{abc}\,T_{c}}~.}

The factor ofi in the commutation relation arises from the physics convention and is not present when using the mathematicians' convention.

The conventional normalization condition is


c,e=1n21dacedbce=n24nδab .{\displaystyle \sum _{c,e=1}^{n^{2}-1}d_{ace}\,d_{bce}={\frac {\,n^{2}-4\,}{n}}\,\delta _{ab}~.}

The generators satisfy the Jacobi identity:[5]

[Ta,[Tb,Tc]]+[Tb,[Tc,Ta]]+[Tc,[Ta,Tb]]=0.{\displaystyle [T_{a},[T_{b},T_{c}]]+[T_{b},[T_{c},T_{a}]]+[T_{c},[T_{a},T_{b}]]=0.}

By convention, in the physics literature the generatorsTa{\displaystyle T_{a}} are defined as the traceless Hermitian complex matrices with a1/2{\displaystyle 1/2} prefactor: for theSU(2){\displaystyle SU(2)} group, the generators are chosen as12σ1,12σ2,12σ3{\displaystyle {\frac {1}{2}}\sigma _{1},{\frac {1}{2}}\sigma _{2},{\frac {1}{2}}\sigma _{3}} whereσa{\displaystyle \sigma _{a}} are thePauli matrices, while for the case ofSU(3){\displaystyle SU(3)} one definesTa=12λa{\displaystyle T_{a}={\frac {1}{2}}\lambda _{a}} whereλa{\displaystyle \lambda _{a}} are theGell-Mann matrices.[6] With these definitions, the generators satisfy the following normalization condition:

Tr(TaTb)=12δab.{\displaystyle Tr(T_{a}T_{b})={\frac {1}{2}}\delta _{ab}.}

Adjoint representation

[edit]

In the(n2 − 1)-dimensionaladjoint representation, the generators are represented by(n2 − 1) × (n2 − 1) matrices, whose elements are defined by the structure constants themselves:

(Ta)jk=ifajk.{\displaystyle \left(T_{a}\right)_{jk}=-if_{ajk}.}

The group SU(2)

[edit]
See also:Versor,Pauli matrices,3D rotation group § A note on Lie algebras, andRepresentation theory of SU(2)

Usingmatrix multiplication for the binary operation,SU(2) forms a group,[7]

SU(2)={(αβ¯βα¯):  α,βC,|α|2+|β|2=1} ,{\displaystyle \operatorname {SU} (2)=\left\{{\begin{pmatrix}\alpha &-{\overline {\beta }}\\\beta &{\overline {\alpha }}\end{pmatrix}}:\ \ \alpha ,\beta \in \mathbb {C} ,|\alpha |^{2}+|\beta |^{2}=1\right\}~,}

where the overline denotescomplex conjugation.

Diffeomorphism with the 3-sphereS3

[edit]

If we considerα,β{\displaystyle \alpha ,\beta } as a pair inC2{\displaystyle \mathbb {C} ^{2}} whereα=a+bi{\displaystyle \alpha =a+bi} andβ=c+di{\displaystyle \beta =c+di}, then the equation|α|2+|β|2=1{\displaystyle |\alpha |^{2}+|\beta |^{2}=1} becomes

a2+b2+c2+d2=1{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=1}

This is the equation of the3-sphere S3. This can also be seen using an embedding: the map

φ:C2M(2,C)φ(α,β)=(αβ¯βα¯),{\displaystyle {\begin{aligned}\varphi \colon \mathbb {C} ^{2}\to {}&\operatorname {M} (2,\mathbb {C} )\\[5pt]\varphi (\alpha ,\beta )={}&{\begin{pmatrix}\alpha &-{\overline {\beta }}\\\beta &{\overline {\alpha }}\end{pmatrix}},\end{aligned}}}

whereM(2,C){\displaystyle \operatorname {M} (2,\mathbb {C} )} denotes the set of 2 by 2 complex matrices, is an injective real linear map (by consideringC2{\displaystyle \mathbb {C} ^{2}}diffeomorphic toR4{\displaystyle \mathbb {R} ^{4}} andM(2,C){\displaystyle \operatorname {M} (2,\mathbb {C} )} diffeomorphic toR8{\displaystyle \mathbb {R} ^{8}}). Hence, therestriction ofφ to the3-sphere (since modulus is 1), denotedS3, is an embedding of the 3-sphere onto a compact submanifold ofM(2,C){\displaystyle \operatorname {M} (2,\mathbb {C} )}, namelyφ(S3) = SU(2).

Therefore, as a manifold,S3 is diffeomorphic toSU(2), which shows thatSU(2) issimply connected and thatS3 can be endowed with the structure of a compact, connectedLie group.

Isomorphism with group of versors

[edit]

Quaternions of norm 1 are calledversors since they generate therotation group SO(3):TheSU(2) matrix:

(a+bic+dic+diabi)(a,b,c,dR){\displaystyle {\begin{pmatrix}a+bi&c+di\\-c+di&a-bi\end{pmatrix}}\quad (a,b,c,d\in \mathbb {R} )}

can be mapped to the quaternion

a1^+bi^+cj^+dk^{\displaystyle a\,{\hat {1}}+b\,{\hat {i}}+c\,{\hat {j}}+d\,{\hat {k}}}

This map is in fact agroup isomorphism. Additionally, the determinant of the matrix is the squared norm of the corresponding quaternion. Clearly any matrix inSU(2) is of this form and, since it has determinant 1, the corresponding quaternion has norm1. ThusSU(2) is isomorphic to the group of versors.[8]

Relation to spatial rotations

[edit]
Main articles:3D rotation group § Connection between SO(3) and SU(2), andQuaternions and spatial rotation

Every versor is naturally associated to a spatial rotation in 3 dimensions, and the product of versors is associated to the composition of the associated rotations. Furthermore, every rotation arises from exactly two versors in this fashion. In short: there is a 2:1 surjective homomorphism fromSU(2) toSO(3); consequentlySO(3) is isomorphic to thequotient groupSU(2)/{±I}, the manifold underlyingSO(3) is obtained by identifying antipodal points of the 3-sphereS3, andSU(2) is theuniversal cover ofSO(3).

Lie algebra

[edit]

TheLie algebra ofSU(2) consists of2 × 2skew-Hermitian matrices with trace zero.[9] Explicitly, this means

su(2)={(i az¯zi a): aR,zC} .{\displaystyle {\mathfrak {su}}(2)=\left\{{\begin{pmatrix}i\ a&-{\overline {z}}\\z&-i\ a\end{pmatrix}}:\ a\in \mathbb {R} ,z\in \mathbb {C} \right\}~.}

The Lie algebra is then generated by the following matrices,

u1=(0ii0),u2=(0110),u3=(i00i) ,{\displaystyle u_{1}={\begin{pmatrix}0&i\\i&0\end{pmatrix}},\quad u_{2}={\begin{pmatrix}0&-1\\1&0\end{pmatrix}},\quad u_{3}={\begin{pmatrix}i&0\\0&-i\end{pmatrix}}~,}

which have the form of the general element specified above.

This can also be written assu(2)=span{iσ1,iσ2,iσ3}{\displaystyle {\mathfrak {su}}(2)=\operatorname {span} \left\{i\sigma _{1},i\sigma _{2},i\sigma _{3}\right\}} using thePauli matrices.

These satisfy thequaternion relationshipsu2 u3=u3 u2=u1 ,{\displaystyle u_{2}\ u_{3}=-u_{3}\ u_{2}=u_{1}~,}u3 u1=u1 u3=u2 ,{\displaystyle u_{3}\ u_{1}=-u_{1}\ u_{3}=u_{2}~,} andu1u2=u2 u1=u3 .{\displaystyle u_{1}u_{2}=-u_{2}\ u_{1}=u_{3}~.} Thecommutator bracket is therefore specified by

[u3,u1]=2 u2,[u1,u2]=2 u3,[u2,u3]=2 u1 .{\displaystyle \left[u_{3},u_{1}\right]=2\ u_{2},\quad \left[u_{1},u_{2}\right]=2\ u_{3},\quad \left[u_{2},u_{3}\right]=2\ u_{1}~.}

The above generators are related to thePauli matrices byu1=i σ1 ,u2=i σ2{\displaystyle u_{1}=i\ \sigma _{1}~,\,u_{2}=-i\ \sigma _{2}} andu3=+i σ3 .{\displaystyle u_{3}=+i\ \sigma _{3}~.} This representation is routinely used inquantum mechanics to represent thespin offundamental particles such aselectrons. They also serve asunit vectors for the description of our 3 spatial dimensions inloop quantum gravity. They also correspond to thePauli X, Y, and Z gates, which are standard generators for the single qubit gates, corresponding to 3d rotations about the axes of theBloch sphere.

The Lie algebra serves to work out therepresentations ofSU(2).

SU(3)

[edit]
See also:Clebsch–Gordan coefficients for SU(3)

The groupSU(3) is an 8-dimensionalsimple Lie group consisting of all3 × 3unitarymatrices withdeterminant 1.

Topology

[edit]

The groupSU(3) is a simply-connected, compact Lie group.[10] Its topological structure can be understood by noting thatSU(3) actstransitively on the unit sphereS5{\displaystyle S^{5}} inC3R6{\displaystyle \mathbb {C} ^{3}\cong \mathbb {R} ^{6}}. Thestabilizer of an arbitrary point in the sphere is isomorphic toSU(2), which topologically is a 3-sphere. It then follows thatSU(3) is afiber bundle over the baseS5 with fiberS3. Since the fibers and the base are simply connected, the simple connectedness ofSU(3) then follows by means of a standard topological result (thelong exact sequence of homotopy groups for fiber bundles).[11]

TheSU(2)-bundles overS5 are classified byπ4(S3)=Z2{\displaystyle \pi _{4}{\mathord {\left(S^{3}\right)}}=\mathbb {Z} _{2}} since any such bundle can be constructed by looking at trivial bundles on the two hemispheresSN5,SS5{\displaystyle S_{\text{N}}^{5},S_{\text{S}}^{5}} and looking at the transition function on their intersection, which is a copy ofS4, so

SN5SS5S4{\displaystyle S_{\text{N}}^{5}\cap S_{\text{S}}^{5}\simeq S^{4}}

Then, all such transition functions are classified by homotopy classes of maps

[S4,SU(2)][S4,S3]=π4(S3)Z/2{\displaystyle \left[S^{4},\mathrm {SU} (2)\right]\cong \left[S^{4},S^{3}\right]=\pi _{4}{\mathord {\left(S^{3}\right)}}\cong \mathbb {Z} /2}

and asπ4(SU(3))={0}{\displaystyle \pi _{4}(\mathrm {SU} (3))=\{0\}} rather thanZ/2{\displaystyle \mathbb {Z} /2},SU(3) cannot be the trivial bundleSU(2) ×S5S3 ×S5, and therefore must be the unique nontrivial (twisted) bundle. This can be shown by looking at the induced long exact sequence on homotopy groups.

Representation theory

[edit]

The representation theory ofSU(3) is well-understood.[12] Descriptions of these representations, from the point of view of its complexified Lie algebrasl(3;C){\displaystyle {\mathfrak {sl}}(3;\mathbb {C} )}, may be found in the articles onLie algebra representations orthe Clebsch–Gordan coefficients forSU(3).

Lie algebra

[edit]

The generators,T, of the Lie algebrasu(3){\displaystyle {\mathfrak {su}}(3)} ofSU(3) in the defining (particle physics, Hermitian) representation, are

Ta=λa2 ,{\displaystyle T_{a}={\frac {\lambda _{a}}{2}}~,}

whereλa, theGell-Mann matrices, are theSU(3) analog of thePauli matrices forSU(2):

λ1=(010100000),λ2=(0i0i00000),λ3=(100010000),λ4=(001000100),λ5=(00i000i00),λ6=(000001010),λ7=(00000i0i0),λ8=13(100010002).{\displaystyle {\begin{aligned}\lambda _{1}={}&{\begin{pmatrix}0&1&0\\1&0&0\\0&0&0\end{pmatrix}},&\lambda _{2}={}&{\begin{pmatrix}0&-i&0\\i&0&0\\0&0&0\end{pmatrix}},&\lambda _{3}={}&{\begin{pmatrix}1&0&0\\0&-1&0\\0&0&0\end{pmatrix}},\\[6pt]\lambda _{4}={}&{\begin{pmatrix}0&0&1\\0&0&0\\1&0&0\end{pmatrix}},&\lambda _{5}={}&{\begin{pmatrix}0&0&-i\\0&0&0\\i&0&0\end{pmatrix}},\\[6pt]\lambda _{6}={}&{\begin{pmatrix}0&0&0\\0&0&1\\0&1&0\end{pmatrix}},&\lambda _{7}={}&{\begin{pmatrix}0&0&0\\0&0&-i\\0&i&0\end{pmatrix}},&\lambda _{8}={\frac {1}{\sqrt {3}}}&{\begin{pmatrix}1&0&0\\0&1&0\\0&0&-2\end{pmatrix}}.\end{aligned}}}

Theseλa span alltracelessHermitian matricesH of theLie algebra, as required. Note thatλ2,λ5,λ7 are antisymmetric.

They obey the relations

[Ta,Tb]=ic=18fabcTc,{Ta,Tb}=13δabI3+c=18dabcTc,{\displaystyle {\begin{aligned}\left[T_{a},T_{b}\right]&=i\sum _{c=1}^{8}f_{abc}T_{c},\\\left\{T_{a},T_{b}\right\}&={\frac {1}{3}}\delta _{ab}I_{3}+\sum _{c=1}^{8}d_{abc}T_{c},\end{aligned}}}

or, equivalently,

[λa,λb]=2ic=18fabcλc,{λa,λb}=43δabI3+2c=18dabcλc.{\displaystyle {\begin{aligned}\left[\lambda _{a},\lambda _{b}\right]&=2i\sum _{c=1}^{8}f_{abc}\lambda _{c},\\\{\lambda _{a},\lambda _{b}\}&={\frac {4}{3}}\delta _{ab}I_{3}+2\sum _{c=1}^{8}{d_{abc}\lambda _{c}}.\end{aligned}}}

Thef are thestructure constants of the Lie algebra, given by

f123=1,f147=f156=f246=f257=f345=f367=12,f458=f678=32,{\displaystyle {\begin{aligned}f_{123}&=1,\\f_{147}=-f_{156}=f_{246}=f_{257}=f_{345}=-f_{367}&={\frac {1}{2}},\\f_{458}=f_{678}&={\frac {\sqrt {3}}{2}},\end{aligned}}}

while all otherfabc not related to these by permutation are zero. In general, they vanish unless they contain an odd number of indices from the set{2, 5, 7}.[c]

The symmetric coefficientsd take the values

d118=d228=d338=d888=13d448=d558=d668=d778=123d344=d355=d366=d377=d247=d146=d157=d256=12 .{\displaystyle {\begin{aligned}d_{118}=d_{228}=d_{338}=-d_{888}&={\frac {1}{\sqrt {3}}}\\d_{448}=d_{558}=d_{668}=d_{778}&=-{\frac {1}{2{\sqrt {3}}}}\\d_{344}=d_{355}=-d_{366}=-d_{377}=-d_{247}=d_{146}=d_{157}=d_{256}&={\frac {1}{2}}~.\end{aligned}}}

They vanish if the number of indices from the set{2, 5, 7} is odd.

A genericSU(3) group element generated by a traceless 3×3 Hermitian matrixH, normalized astr(H2) = 2, can be expressed as asecond order matrix polynomial inH:[13]

exp(iθH)=[13Isin(φ+2π3)sin(φ2π3)123 Hsin(φ)14 H2]exp(23 iθsin(φ))cos(φ+2π3)cos(φ2π3)+[13 Isin(φ)sin(φ2π3)123 Hsin(φ+2π3)14 H2]exp(23 iθsin(φ+2π3))cos(φ)cos(φ2π3)+[13 Isin(φ)sin(φ+2π3)123 Hsin(φ2π3)14 H2]exp(23 iθsin(φ2π3))cos(φ)cos(φ+2π3){\displaystyle {\begin{aligned}\exp(i\theta H)={}&\left[-{\frac {1}{3}}I\sin \left(\varphi +{\frac {2\pi }{3}}\right)\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin(\varphi )-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin(\varphi )\right)}{\cos \left(\varphi +{\frac {2\pi }{3}}\right)\cos \left(\varphi -{\frac {2\pi }{3}}\right)}}\\[6pt]&{}+\left[-{\frac {1}{3}}~I\sin(\varphi )\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin \left(\varphi +{\frac {2\pi }{3}}\right)-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin \left(\varphi +{\frac {2\pi }{3}}\right)\right)}{\cos(\varphi )\cos \left(\varphi -{\frac {2\pi }{3}}\right)}}\\[6pt]&{}+\left[-{\frac {1}{3}}~I\sin(\varphi )\sin \left(\varphi +{\frac {2\pi }{3}}\right)-{\frac {1}{2{\sqrt {3}}}}~H\sin \left(\varphi -{\frac {2\pi }{3}}\right)-{\frac {1}{4}}~H^{2}\right]{\frac {\exp \left({\frac {2}{\sqrt {3}}}~i\theta \sin \left(\varphi -{\frac {2\pi }{3}}\right)\right)}{\cos(\varphi )\cos \left(\varphi +{\frac {2\pi }{3}}\right)}}\end{aligned}}}LPwhere

φ13[arccos(332detH)π2].{\displaystyle \varphi \equiv {\frac {1}{3}}\left[\arccos \left({\frac {3{\sqrt {3}}}{2}}\det H\right)-{\frac {\pi }{2}}\right].}

Lie algebra structure

[edit]

As noted above, the Lie algebrasu(n){\displaystyle {\mathfrak {su}}(n)} ofSU(n) consists ofn ×nskew-Hermitian matrices with trace zero.[14]

Thecomplexification of the Lie algebrasu(n){\displaystyle {\mathfrak {su}}(n)} issl(n;C){\displaystyle {\mathfrak {sl}}(n;\mathbb {C} )}, the space of alln ×n complex matrices with trace zero.[15] ACartan subalgebra then consists of the diagonal matrices with trace zero,[16] which we identify with vectors inCn{\displaystyle \mathbb {C} ^{n}} whose entries sum to zero. Theroots then consist of all then(n − 1) permutations of(1, −1, 0, ..., 0).

A choice ofsimple roots is

(1,1,0,,0,0),(0,1,1,,0,0),(0,0,0,,1,1).{\displaystyle {\begin{aligned}(&1,-1,0,\dots ,0,0),\\(&0,1,-1,\dots ,0,0),\\&\vdots \\(&0,0,0,\dots ,1,-1).\end{aligned}}}

So,SU(n) is ofrankn − 1 and itsDynkin diagram is given byAn−1, a chain ofn − 1 nodes:....[17] ItsCartan matrix is

(2100121001200002).{\displaystyle {\begin{pmatrix}2&-1&0&\dots &0\\-1&2&-1&\dots &0\\0&-1&2&\dots &0\\\vdots &\vdots &\vdots &\ddots &\vdots \\0&0&0&\dots &2\end{pmatrix}}.}

ItsWeyl group orCoxeter group is thesymmetric groupSn, thesymmetry group of the(n − 1)-simplex.

Generalized special unitary group

[edit]

For afieldF, thegeneralized special unitary group overF,SU(p,q;F), is thegroup of alllinear transformations ofdeterminant 1 of avector space of rankn =p +q overF which leave invariant anondegenerate,Hermitian form ofsignature(p,q). This group is often referred to as thespecial unitary group of signaturepq overF. The fieldF can be replaced by acommutative ring, in which case the vector space is replaced by afree module.

Specifically, fix aHermitian matrixA of signaturepq inGL(n,R){\displaystyle \operatorname {GL} (n,\mathbb {R} )}, then all

MSU(p,q,R){\displaystyle M\in \operatorname {SU} (p,q,\mathbb {R} )}

satisfy

MAM=AdetM=1.{\displaystyle {\begin{aligned}M^{*}AM&=A\\\det M&=1.\end{aligned}}}

Often one will see the notationSU(p,q) without reference to a ring or field; in this case, the ring or field being referred to isC{\displaystyle \mathbb {C} } and this gives one of the classicalLie groups. The standard choice forA whenF=C{\displaystyle \operatorname {F} =\mathbb {C} } is

A=[00i0In20i00].{\displaystyle A={\begin{bmatrix}0&0&i\\0&I_{n-2}&0\\-i&0&0\end{bmatrix}}.}

However, there may be better choices forA for certain dimensions which exhibit more behaviour under restriction to subrings ofC{\displaystyle \mathbb {C} }.

Example

[edit]

An important example of this type of group is thePicard modular groupSU(2,1;Z[i]){\displaystyle \operatorname {SU} (2,1;\mathbb {Z} [i])} which acts (projectively) on complex hyperbolic space of dimension two, in the same way thatSL(2,9;Z){\displaystyle \operatorname {SL} (2,9;\mathbb {Z} )} acts (projectively) on realhyperbolic space of dimension two. In 2005 Gábor Francsics andPeter Lax computed an explicit fundamental domain for the action of this group onHC2.[18]

A further example isSU(1,1;C){\displaystyle \operatorname {SU} (1,1;\mathbb {C} )}, which is isomorphic toSL(2,R){\displaystyle \operatorname {SL} (2,\mathbb {R} )}.

Important subgroups

[edit]

In physics the special unitary group is used to representfermionic symmetries. In theories ofsymmetry breaking it is important to be able to find the subgroups of the special unitary group. Subgroups ofSU(n) that are important inGUT physics are, forp > 1,np > 1,

SU(n)SU(p)×SU(np)×U(1),{\displaystyle \operatorname {SU} (n)\supset \operatorname {SU} (p)\times \operatorname {SU} (n-p)\times \operatorname {U} (1),}

where × denotes thedirect product andU(1), known as thecircle group, is the multiplicative group of allcomplex numbers withabsolute value 1.

For completeness, there are also theorthogonal andsymplectic subgroups,

SU(n)SO(n),SU(2n)Sp(n).{\displaystyle {\begin{aligned}\operatorname {SU} (n)&\supset \operatorname {SO} (n),\\\operatorname {SU} (2n)&\supset \operatorname {Sp} (n).\end{aligned}}}

Since therank ofSU(n) isn − 1 and ofU(1) is 1, a useful check is that the sum of the ranks of the subgroups is less than or equal to the rank of the original group.SU(n) is a subgroup of various other Lie groups,

SO(2n)SU(n)Sp(n)SU(n)Spin(4)=SU(2)×SU(2)E6SU(6)E7SU(8)G2SU(3){\displaystyle {\begin{aligned}\operatorname {SO} (2n)&\supset \operatorname {SU} (n)\\\operatorname {Sp} (n)&\supset \operatorname {SU} (n)\\\operatorname {Spin} (4)&=\operatorname {SU} (2)\times \operatorname {SU} (2)\\\operatorname {E} _{6}&\supset \operatorname {SU} (6)\\\operatorname {E} _{7}&\supset \operatorname {SU} (8)\\\operatorname {G} _{2}&\supset \operatorname {SU} (3)\end{aligned}}}SeeSpin group andSimple Lie group forE6,E7, andG2.

There are also theaccidental isomorphisms:SU(4) = Spin(6),SU(2) = Spin(3) = Sp(1),[d] andU(1) = Spin(2) = SO(2).

One may finally mention thatSU(2) is thedouble covering group ofSO(3), a relation that plays an important role in the theory of rotations of 2-spinors in non-relativisticquantum mechanics.

SU(1, 1)

[edit]

SU(1,1)={(uvvu)M(2,C):uuvv=1},{\displaystyle \mathrm {SU} (1,1)=\left\{{\begin{pmatrix}u&v\\v^{*}&u^{*}\end{pmatrix}}\in M(2,\mathbb {C} ):uu^{*}-vv^{*}=1\right\},} where u {\displaystyle ~u^{*}~} denotes thecomplex conjugate of the complex numberu.

This group is isomorphic toSL(2,ℝ) andSpin(2,1)[19] where the numbers separated by a comma refer to thesignature of thequadratic form preserved by the group. The expression uuvv {\displaystyle ~uu^{*}-vv^{*}~} in the definition ofSU(1,1) is anHermitian form which becomes anisotropic quadratic form whenu andv are expanded with their real components.

An early appearance of this group was as the "unit sphere" ofcoquaternions, introduced byJames Cockle in 1852. Let

j=[0110],k=[1 001],i=[ 0110] .{\displaystyle j={\begin{bmatrix}0&1\\1&0\end{bmatrix}}\,,\quad k={\begin{bmatrix}1&\;~0\\0&-1\end{bmatrix}}\,,\quad i={\begin{bmatrix}\;~0&1\\-1&0\end{bmatrix}}~.}

Then jk=[011 0]=i , {\displaystyle ~j\,k={\begin{bmatrix}0&-1\\1&\;~0\end{bmatrix}}=-i~,~} ijk=I2[1001] , {\displaystyle ~i\,j\,k=I_{2}\equiv {\begin{bmatrix}1&0\\0&1\end{bmatrix}}~,~} the 2×2 identity matrix, ki=j ,{\displaystyle ~k\,i=j~,} andij=k,{\displaystyle \;i\,j=k\;,} and the elementsi, j, andk allanticommute, as inquaternions. Alsoi{\displaystyle i} is still a square root ofI2 (negative of the identity matrix), whereas j2=k2=+I2 {\displaystyle ~j^{2}=k^{2}=+I_{2}~} are not, unlike in quaternions. For both quaternions andcoquaternions, all scalar quantities are treated as implicit multiples ofI2 and notated as1.

The coquaternion q=w+xi+yj+zk {\displaystyle ~q=w+x\,i+y\,j+z\,k~} with scalarw, has conjugate q=wxiyjzk {\displaystyle ~q=w-x\,i-y\,j-z\,k~} similar to Hamilton's quaternions. The quadratic form is qq=w2+x2y2z2.{\displaystyle ~q\,q^{*}=w^{2}+x^{2}-y^{2}-z^{2}.}

Note that the 2-sheethyperboloid{xi+yj+zk:x2y2z2=1}{\displaystyle \left\{xi+yj+zk:x^{2}-y^{2}-z^{2}=1\right\}} corresponds to theimaginary units in the algebra so that any pointp on this hyperboloid can be used as apole of a sinusoidal wave according toEuler's formula.

The hyperboloid is stable underSU(1, 1), illustrating the isomorphism withSpin(2, 1). The variability of the pole of a wave, as noted in studies ofpolarization, might viewelliptical polarization as an exhibit of the elliptical shape of a wave withpole p±i {\displaystyle ~p\neq \pm i~}. ThePoincaré sphere model used since 1892 has been compared to a 2-sheet hyperboloid model,[20] and the practice ofSU(1, 1) interferometry has been introduced.

When an element ofSU(1, 1) is interpreted as aMöbius transformation, it leaves theunit disk stable, so this group represents themotions of thePoincaré disk model of hyperbolic plane geometry. Indeed, for a point[z, 1] in thecomplex projective line, the action ofSU(1,1) is given by

(uvvu)[z,1]=[uz+v,vz+u]=[uz+vvz+u,1]{\displaystyle {\begin{pmatrix}u&v\\v^{*}&u^{*}\end{pmatrix}}\,{\bigl [}\;z,\;1\;{\bigr ]}=[\;u\,z+v,\,v^{*}\,z+u^{*}\;]\,=\,\left[\;{\frac {uz+v}{v^{*}z+u^{*}}},\,1\;\right]}

since inprojective coordinates(uz+v,vz+u)(uz+vvz+u,1).{\displaystyle (\;u\,z+v,\;v^{*}\,z+u^{*}\;)\thicksim \left(\;{\frac {\,u\,z+v\,}{v^{*}\,z+u^{*}}},\;1\;\right).}

Writingsuv+suv¯=2(suv),{\displaystyle \;suv+{\overline {suv}}=2\,\Re {\mathord {\bigl (}}\,suv\,{\bigr )}\;,} complex number arithmetic shows

|uz+v|2=S+zz and |vz+u|2=S+1 ,{\displaystyle {\bigl |}u\,z+v{\bigr |}^{2}=S+z\,z^{*}\quad {\text{ and }}\quad {\bigl |}v^{*}\,z+u^{*}{\bigr |}^{2}=S+1~,}whereS=vv(zz+1)+2(uvz).{\displaystyle S=v\,v^{*}\left(z\,z^{*}+1\right)+2\,\Re {\mathord {\bigl (}}\,uvz\,{\bigr )}.}

Therefore,zz<1|uz+v|<|vz+u|{\displaystyle z\,z^{*}<1\implies {\bigl |}uz+v{\bigr |}<{\bigl |}\,v^{*}\,z+u^{*}\,{\bigr |}} so that their ratio lies in the open disk.[21]

See also

[edit]

Footnotes

[edit]
  1. ^For a characterization ofU(n) and henceSU(n) in terms of preservation of the standard inner product onCn{\displaystyle \mathbb {C} ^{n}}, seeClassical group.
  2. ^For an explicit description of the homomorphismSU(2) → SO(3), seeConnection between SO(3) and SU(2).
  3. ^So fewer than16 of allfabcs are non-vanishing.
  4. ^Sp(n) is thecompact real form ofSp(2n,C){\displaystyle \operatorname {Sp} (2n,\mathbb {C} )}. It is sometimes denotedUSp(2n). The dimension of theSp(n)-matrices is2n × 2n.

Citations

[edit]
  1. ^Halzen, Francis;Martin, Alan (1984).Quarks & Leptons: An Introductory Course in Modern Particle Physics. John Wiley & Sons.ISBN 0-471-88741-2.
  2. ^Hall 2015, Proposition 13.11
  3. ^Wybourne, B.G. (1974).Classical Groups for Physicists. Wiley-Interscience.ISBN 0471965057.
  4. ^Hall 2015 Proposition 3.24
  5. ^Georgi, Howard (2018-05-04).Lie Algebras in Particle Physics: From Isospin to Unified Theories (1 ed.). Boca Raton: CRC Press.Bibcode:2018laip.book.....G.doi:10.1201/9780429499210.ISBN 978-0-429-49921-0.
  6. ^Georgi, Howard (2018-05-04).Lie Algebras in Particle Physics: From Isospin to Unified Theories (1 ed.). Boca Raton: CRC Press.Bibcode:2018laip.book.....G.doi:10.1201/9780429499210.ISBN 978-0-429-49921-0.
  7. ^Hall 2015 Exercise 1.5
  8. ^Savage, Alistair."LieGroups"(PDF). MATH 4144 notes.
  9. ^Hall 2015 Proposition 3.24
  10. ^Hall 2015 Proposition 13.11
  11. ^Hall 2015 Section 13.2
  12. ^Hall 2015 Chapter 6
  13. ^Rosen, S P (1971). "Finite Transformations in Various Representations of SU(3)".Journal of Mathematical Physics.12 (4):673–681.Bibcode:1971JMP....12..673R.doi:10.1063/1.1665634.;Curtright, T L; Zachos, C K (2015). "Elementary results for the fundamental representation of SU(3)".Reports on Mathematical Physics.76 (3):401–404.arXiv:1508.00868.Bibcode:2015RpMP...76..401C.doi:10.1016/S0034-4877(15)30040-9.S2CID 119679825.
  14. ^Hall 2015 Proposition 3.24
  15. ^Hall 2015 Section 3.6
  16. ^Hall 2015 Section 7.7.1
  17. ^Hall 2015 Section 8.10.1
  18. ^Francsics, Gabor; Lax, Peter D. (September 2005). "An explicit fundamental domain for the Picard modular group in two complex dimensions".arXiv:math/0509708.
  19. ^Gilmore, Robert (1974).Lie Groups, Lie Algebras and some of their Applications.John Wiley & Sons. pp. 52, 201−205.MR 1275599.
  20. ^Mota, R.D.; Ojeda-Guillén, D.; Salazar-Ramírez, M.; Granados, V.D. (2016). "SU(1,1) approach to Stokes parameters and the theory of light polarization".Journal of the Optical Society of America B.33 (8):1696–1701.arXiv:1602.03223.Bibcode:2016JOSAB..33.1696M.doi:10.1364/JOSAB.33.001696.S2CID 119146980.
  21. ^Siegel, C. L. (1971).Topics in Complex Function Theory. Vol. 2. Translated by Shenitzer, A.; Tretkoff, M. Wiley-Interscience. pp. 13–15.ISBN 0-471-79080 X.

References

[edit]
  • Hall, Brian C. (2015),Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer,ISBN 978-3319134666
  • Iachello, Francesco (2006),Lie Algebras and Applications, Lecture Notes in Physics, vol. 708, Springer,ISBN 3540362363
Retrieved from "https://en.wikipedia.org/w/index.php?title=Special_unitary_group&oldid=1287285532"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp