Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quaternion group

From Wikipedia, the free encyclopedia
Non-abelian group of order eight
Quaternion group multiplication table (simplified form)
1ijk
11ijk
ii−1kj
jjk−1i
kkji−1
Algebraic structureGroup theory
Group theory
Cycle diagram of Q8. Each color specifies a series of powers of any element connected to the identity element e = 1. For example, the cycle in red reflects the fact that i2 =e, i3 =i and i4 = e. The red cycle also reflects thati2 =e,i3 = i andi4 = e.

Ingroup theory, thequaternion group Q8 (sometimes just denoted by Q) is anon-abeliangroup oforder eight, isomorphic to the eight-element subset{1,i,j,k,1,i,j,k}{\displaystyle \{1,i,j,k,-1,-i,-j,-k\}} of thequaternions under multiplication. It is given by thegroup presentation

Q8=e¯,i,j,ke¯2=e,i2=j2=k2=ijk=e¯,{\displaystyle \mathrm {Q} _{8}=\langle {\bar {e}},i,j,k\mid {\bar {e}}^{2}=e,\;i^{2}=j^{2}=k^{2}=ijk={\bar {e}}\rangle ,}

wheree is the identity element andecommutes with the other elements of the group. These relations, discovered byW. R. Hamilton, also generate the quaternions as an algebra over the real numbers.

Another presentation of Q8 is

Q8=a,ba4=e,a2=b2,ba=a1b.{\displaystyle \mathrm {Q} _{8}=\langle a,b\mid a^{4}=e,a^{2}=b^{2},ba=a^{-1}b\rangle .}

Like many other finite groups, itcan be realized as theGalois group of a certain field ofalgebraic numbers.[1]

Compared to dihedral group

[edit]

The quaternion group Q8 has the same order as thedihedral groupD4, but a different structure, as shown by their Cayley and cycle graphs:

Q8D4
Cayley graph
Red arrows connectggi, green connectggj.
Cycle graph

In the diagrams for D4, the group elements are marked with their action on a letter F in the defining representationR2. The same cannot be done for Q8, since it has no faithful representation inR2 orR3. D4 can be realized as a subset of thesplit-quaternions in the same way that Q8 can be viewed as a subset of the quaternions.

Cayley table

[edit]

TheCayley table (multiplication table) for Q8 is given by:[2]

×eeiijjkk
eeeiijjkk
eeeiijjkk
iiieekkjj
iiieekkjj
jjjkkeeii
jjjkkeeii
kkkjjiiee
kkkjjiiee

Properties

[edit]

The elementsi,j, andk all haveorder four in Q8 and any two of them generate the entire group. Anotherpresentation of Q8[3] based in only two elements to skip this redundancy is:

x,yx4=1,x2=y2,y1xy=x1.{\displaystyle \left\langle x,y\mid x^{4}=1,x^{2}=y^{2},y^{-1}xy=x^{-1}\right\rangle .}

For instance, writing the group elements inlexicographically minimal normal forms, one may identify:

{e,e¯,i,i¯,j,j¯,k,k¯}{e,x2,x,x3,y,x2y,xy,x3y}.{\displaystyle \{e,{\bar {e}},i,{\bar {i}},j,{\bar {j}},k,{\bar {k}}\}\leftrightarrow \{e,x^{2},x,x^{3},y,x^{2}y,xy,x^{3}y\}.}

The quaternion group has the unusual property of beingHamiltonian: Q8 is non-abelian, but everysubgroup isnormal.[4] Every Hamiltonian group contains a copy of Q8.[5]

The quaternion group Q8 and the dihedral group D4 are the two smallest examples of anilpotent non-abelian group.

Thecenter and thecommutator subgroup of Q8 is the subgroup{e,e¯}{\displaystyle \{e,{\bar {e}}\}}. Theinner automorphism group of Q8 is given by the group modulo its center, i.e. thefactor groupQ8/{e,e¯},{\displaystyle \mathrm {Q} _{8}/\{e,{\bar {e}}\},} which isisomorphic to theKlein four-group V. The fullautomorphism group of Q8 isisomorphic to S4, thesymmetric group on four letters (seeMatrix representations below), and theouter automorphism group of Q8 is thus S4/V, which is isomorphic to S3.

The quaternion group Q8 has five conjugacy classes,{e},{e¯},{i,i¯},{j,j¯},{k,k¯},{\displaystyle \{e\},\{{\bar {e}}\},\{i,{\bar {i}}\},\{j,{\bar {j}}\},\{k,{\bar {k}}\},} and so fiveirreducible representations over the complex numbers, with dimensions 1, 1, 1, 1, 2:

Trivial representation.

Sign representations with i, j, k-kernel: Q8 has three maximal normal subgroups: the cyclic subgroups generated by i, j, and k respectively. For each maximal normal subgroupN, we obtain a one-dimensional representation factoring through the 2-elementquotient groupG/N. The representation sends elements ofN to 1, and elements outsideN to −1.

2-dimensional representation: Described below inMatrix representations. It is notrealizable over the real numbers, but is a complex representation: indeed, it is just the quaternionsH{\displaystyle \mathbb {H} } considered as an algebra overC{\displaystyle \mathbb {C} }, and the action is that of left multiplication byQ8H{\displaystyle Q_{8}\subset \mathbb {H} }.

Thecharacter table of Q8 turns out to be the same as that of D4:

Representation(ρ)/Conjugacy class{ e }{e }{ i,i }{ j,j }{ k,k }
Trivial representation11111
Sign representation with i-kernel111−1−1
Sign representation with j-kernel11−11−1
Sign representation with k-kernel11−1−11
2-dimensional representation2−2000

Nevertheless, all the irreducible charactersχρ{\displaystyle \chi _{\rho }} in the rows above have real values, this gives thedecomposition of the realgroup algebra ofG=Q8{\displaystyle G=\mathrm {Q} _{8}} into minimal two-sidedideals:

R[Q8]=ρ(eρ),{\displaystyle \mathbb {R} [\mathrm {Q} _{8}]=\bigoplus _{\rho }(e_{\rho }),}

where theidempotentseρR[Q8]{\displaystyle e_{\rho }\in \mathbb {R} [\mathrm {Q} _{8}]} correspond to the irreducibles:

eρ=dim(ρ)|G|gGχρ(g1)g,{\displaystyle e_{\rho }={\frac {\dim(\rho )}{|G|}}\sum _{g\in G}\chi _{\rho }(g^{-1})g,}

so that

etriv=18(e+e¯+i+i¯+j+j¯+k+k¯)ei-ker=18(e+e¯+i+i¯jj¯kk¯)ej-ker=18(e+e¯ii¯+j+j¯kk¯)ek-ker=18(e+e¯ii¯jj¯+k+k¯)e2=28(2e2e¯)=12(ee¯){\displaystyle {\begin{aligned}e_{\text{triv}}&={\tfrac {1}{8}}(e+{\bar {e}}+i+{\bar {i}}+j+{\bar {j}}+k+{\bar {k}})\\e_{i{\text{-ker}}}&={\tfrac {1}{8}}(e+{\bar {e}}+i+{\bar {i}}-j-{\bar {j}}-k-{\bar {k}})\\e_{j{\text{-ker}}}&={\tfrac {1}{8}}(e+{\bar {e}}-i-{\bar {i}}+j+{\bar {j}}-k-{\bar {k}})\\e_{k{\text{-ker}}}&={\tfrac {1}{8}}(e+{\bar {e}}-i-{\bar {i}}-j-{\bar {j}}+k+{\bar {k}})\\e_{2}&={\tfrac {2}{8}}(2e-2{\bar {e}})={\tfrac {1}{2}}(e-{\bar {e}})\end{aligned}}}

Each of these irreducible ideals is isomorphic to a realcentral simple algebra, the first four to the real fieldR{\displaystyle \mathbb {R} }. The last ideal(e2){\displaystyle (e_{2})} is isomorphic to theskew field ofquaternionsH{\displaystyle \mathbb {H} } by the correspondence:

12(ee¯)1,12(ii¯)i,12(jj¯)j,12(kk¯)k.{\displaystyle {\begin{aligned}{\tfrac {1}{2}}(e-{\bar {e}})&\longleftrightarrow 1,\\{\tfrac {1}{2}}(i-{\bar {i}})&\longleftrightarrow i,\\{\tfrac {1}{2}}(j-{\bar {j}})&\longleftrightarrow j,\\{\tfrac {1}{2}}(k-{\bar {k}})&\longleftrightarrow k.\end{aligned}}}

Furthermore, the projection homomorphismR[Q8](e2)H{\displaystyle \mathbb {R} [\mathrm {Q} _{8}]\to (e_{2})\cong \mathbb {H} } given byrre2{\displaystyle r\mapsto re_{2}} has kernel ideal generated by the idempotent:

e2=e1+ei-ker+ej-ker+ek-ker=12(e+e¯),{\displaystyle e_{2}^{\perp }=e_{1}+e_{i{\text{-ker}}}+e_{j{\text{-ker}}}+e_{k{\text{-ker}}}={\tfrac {1}{2}}(e+{\bar {e}}),}

so the quaternions can also be obtained as thequotient ringR[Q8]/(e+e¯)H{\displaystyle \mathbb {R} [\mathrm {Q} _{8}]/(e+{\bar {e}})\cong \mathbb {H} }. Note that this is irreducible as a real representation ofQ8{\displaystyle Q_{8}}, but splits into two copies of the two-dimensional irreducible when extended to the complex numbers. Indeed, the complex group algebra isC[Q8]C4M2(C),{\displaystyle \mathbb {C} [\mathrm {Q} _{8}]\cong \mathbb {C} ^{\oplus 4}\oplus M_{2}(\mathbb {C} ),} whereM2(C)HRC{\displaystyle M_{2}(\mathbb {C} )\cong \mathbb {H} \otimes _{\mathbb {R} }\mathbb {C} } is the algebra ofbiquaternions.

Matrix representations

[edit]
Multiplication table of quaternion group as a subgroup ofSL(2,C). The entries are represented by sectors corresponding to their arguments: 1 (green),i (blue), −1 (red), −i (yellow).

The two-dimensional irreducible complexrepresentation described above gives the quaternion group Q8 as a subgroup of thegeneral linear groupGL(2,C){\displaystyle \operatorname {GL} (2,\mathbb {C} )}. The quaternion group is a multiplicative subgroup of the quaternion algebra:

H=R1+Ri+Rj+Rk=C1+Cj,{\displaystyle \mathbb {H} =\mathbb {R} 1+\mathbb {R} i+\mathbb {R} j+\mathbb {R} k=\mathbb {C} 1+\mathbb {C} j,}

which has aregular representationρ:HM(2,C){\displaystyle \rho :\mathbb {H} \to \operatorname {M} (2,\mathbb {C} )} by left multiplication on itself considered as a complex vector space with basis{1,j},{\displaystyle \{1,j\},} so thatzH{\displaystyle z\in \mathbb {H} } corresponds to theC{\displaystyle \mathbb {C} }-linear mappingρz:a+jbz(a+jb).{\displaystyle \rho _{z}:a+jb\mapsto z\cdot (a+jb).} The resulting representation

{ρ:Q8GL(2,C)gρg{\displaystyle {\begin{cases}\rho :\mathrm {Q} _{8}\to \operatorname {GL} (2,\mathbb {C} )\\g\longmapsto \rho _{g}\end{cases}}}

is given by:

e(1001)i(i00i)j(0110)k(0ii0)e¯(1001)i¯(i00i)j¯(0110)k¯(0ii0).{\displaystyle {\begin{matrix}e\mapsto {\begin{pmatrix}1&0\\0&1\end{pmatrix}}&i\mapsto {\begin{pmatrix}i&0\\0&\!\!\!\!-i\end{pmatrix}}&j\mapsto {\begin{pmatrix}0&\!\!\!\!-1\\1&0\end{pmatrix}}&k\mapsto {\begin{pmatrix}0&\!\!\!\!-i\\\!\!\!-i&0\end{pmatrix}}\\{\overline {e}}\mapsto {\begin{pmatrix}\!\!\!-1&0\\0&\!\!\!\!-1\end{pmatrix}}&{\overline {i}}\mapsto {\begin{pmatrix}\!\!\!-i&0\\0&i\end{pmatrix}}&{\overline {j}}\mapsto {\begin{pmatrix}0&1\\\!\!\!-1&0\end{pmatrix}}&{\overline {k}}\mapsto {\begin{pmatrix}0&i\\i&0\end{pmatrix}}.\end{matrix}}}

Since all of the above matrices have unit determinant, this is a representation of Q8 in thespecial linear groupSL(2,C){\displaystyle \operatorname {SL} (2,\mathbb {C} )}.[6]

A variant gives a representation byunitary matrices (table at right). LetgQ8{\displaystyle g\in \mathrm {Q} _{8}} correspond to the linear mappingρg:a+bj(a+bj)jg1j1,{\displaystyle \rho _{g}:a+bj\mapsto (a+bj)\cdot jg^{-1}j^{-1},} so thatρ:Q8SU(2){\displaystyle \rho :\mathrm {Q} _{8}\to \operatorname {SU} (2)} is given by:

e(1001)i(i00i)j(0110)k(0ii0)e¯(1001)i¯(i00i)j¯(0110)k¯(0ii0).{\displaystyle {\begin{matrix}e\mapsto {\begin{pmatrix}1&0\\0&1\end{pmatrix}}&i\mapsto {\begin{pmatrix}i&0\\0&\!\!\!\!-i\end{pmatrix}}&j\mapsto {\begin{pmatrix}0&1\\\!\!\!-1&0\end{pmatrix}}&k\mapsto {\begin{pmatrix}0&i\\i&0\end{pmatrix}}\\{\overline {e}}\mapsto {\begin{pmatrix}\!\!\!-1&0\\0&\!\!\!\!-1\end{pmatrix}}&{\overline {i}}\mapsto {\begin{pmatrix}\!\!\!-i&0\\0&i\end{pmatrix}}&{\overline {j}}\mapsto {\begin{pmatrix}0&\!\!\!\!-1\\1&0\end{pmatrix}}&{\overline {k}}\mapsto {\begin{pmatrix}0&\!\!\!\!-i\\\!\!\!-i&0\end{pmatrix}}.\end{matrix}}}

It is worth noting that physicists exclusively use a different convention for theSU(2){\displaystyle \operatorname {SU} (2)} matrix representation to make contact with the usualPauli matrices:

e(1001)=12×2i(0ii0)=iσxj(0110)=iσyk(i00i)=iσze¯(1001)=12×2i¯(0ii0)=iσxj¯(0110)=iσyk¯(i00i)=iσz.{\displaystyle {\begin{matrix}&e\mapsto {\begin{pmatrix}1&0\\0&1\end{pmatrix}}=\quad \,1_{2\times 2}&i\mapsto {\begin{pmatrix}0&\!\!\!-i\!\\\!\!-i\!\!&0\end{pmatrix}}=-i\sigma _{x}&j\mapsto {\begin{pmatrix}0&\!\!\!-1\!\\1&0\end{pmatrix}}=-i\sigma _{y}&k\mapsto {\begin{pmatrix}\!\!-i\!\!&0\\0&i\end{pmatrix}}=-i\sigma _{z}\\&{\overline {e}}\mapsto {\begin{pmatrix}\!\!-1\!&0\\0&\!\!\!-1\!\end{pmatrix}}=-1_{2\times 2}&{\overline {i}}\mapsto {\begin{pmatrix}0&i\\i&0\end{pmatrix}}=\,\,\,\,i\sigma _{x}&{\overline {j}}\mapsto {\begin{pmatrix}0&1\\\!\!-1\!\!&0\end{pmatrix}}=\,\,\,\,i\sigma _{y}&{\overline {k}}\mapsto {\begin{pmatrix}i&0\\0&\!\!\!-i\!\end{pmatrix}}=\,\,\,\,i\sigma _{z}.\end{matrix}}}

This particular choice is convenient and elegant when one describesspin-1/2 states in the(J2,Jz){\displaystyle ({\vec {J}}^{2},J_{z})} basis and considersangular momentum ladder operatorsJ±=Jx±iJy.{\displaystyle J_{\pm }=J_{x}\pm iJ_{y}.}

Multiplication table of the quaternion group as a subgroup ofSL(2,3). The field elements are denoted 0, +, −.

There is also an important action of Q8 on the 2-dimensional vector space over thefinite fieldF3={0,1,1}{\displaystyle \mathbb {F} _{3}=\{0,1,-1\}} (table at right). Amodular representationρ:Q8SL(2,3){\displaystyle \rho :\mathrm {Q} _{8}\to \operatorname {SL} (2,3)} is given by

e(1001)i(1111)j(1111)k(0110)e¯(1001)i¯(1111)j¯(1111)k¯(0110).{\displaystyle {\begin{matrix}e\mapsto {\begin{pmatrix}1&0\\0&1\end{pmatrix}}&i\mapsto {\begin{pmatrix}1&1\\1&\!\!\!\!-1\end{pmatrix}}&j\mapsto {\begin{pmatrix}\!\!\!-1&1\\1&1\end{pmatrix}}&k\mapsto {\begin{pmatrix}0&\!\!\!\!-1\\1&0\end{pmatrix}}\\{\overline {e}}\mapsto {\begin{pmatrix}\!\!\!-1&0\\0&\!\!\!\!-1\end{pmatrix}}&{\overline {i}}\mapsto {\begin{pmatrix}\!\!\!-1&\!\!\!\!-1\\\!\!\!-1&1\end{pmatrix}}&{\overline {j}}\mapsto {\begin{pmatrix}1&\!\!\!\!-1\\\!\!\!-1&\!\!\!\!-1\end{pmatrix}}&{\overline {k}}\mapsto {\begin{pmatrix}0&1\\\!\!\!-1&0\end{pmatrix}}.\end{matrix}}}

This representation can be obtained from theextension field:

F9=F3[k]=F31+F3k,{\displaystyle \mathbb {F} _{9}=\mathbb {F} _{3}[k]=\mathbb {F} _{3}1+\mathbb {F} _{3}k,}

wherek2=1{\displaystyle k^{2}=-1} and the multiplicative groupF9×{\displaystyle \mathbb {F} _{9}^{\times }} has four generators,±(k±1),{\displaystyle \pm (k\pm 1),} of order 8. For eachzF9,{\displaystyle z\in \mathbb {F} _{9},} the two-dimensionalF3{\displaystyle \mathbb {F} _{3}}-vector spaceF9{\displaystyle \mathbb {F} _{9}} admits a linear mapping:

{μz:F9F9μz(a+bk)=z(a+bk){\displaystyle {\begin{cases}\mu _{z}:\mathbb {F} _{9}\to \mathbb {F} _{9}\\\mu _{z}(a+bk)=z\cdot (a+bk)\end{cases}}}

In addition we have theFrobenius automorphismϕ(a+bk)=(a+bk)3{\displaystyle \phi (a+bk)=(a+bk)^{3}} satisfyingϕ2=μ1{\displaystyle \phi ^{2}=\mu _{1}} andϕμz=μϕ(z)ϕ.{\displaystyle \phi \mu _{z}=\mu _{\phi (z)}\phi .} Then the above representation matrices are:

ρ(e¯)=μ1,ρ(i)=μk+1ϕ,ρ(j)=μk1ϕ,ρ(k)=μk.{\displaystyle {\begin{aligned}\rho ({\bar {e}})&=\mu _{-1},\\\rho (i)&=\mu _{k+1}\phi ,\\\rho (j)&=\mu _{k-1}\phi ,\\\rho (k)&=\mu _{k}.\end{aligned}}}

This representation realizes Q8 as anormal subgroup ofGL(2, 3). Thus, for each matrixmGL(2,3){\displaystyle m\in \operatorname {GL} (2,3)}, we have a group automorphism

{ψm:Q8Q8ψm(g)=mgm1{\displaystyle {\begin{cases}\psi _{m}:\mathrm {Q} _{8}\to \mathrm {Q} _{8}\\\psi _{m}(g)=mgm^{-1}\end{cases}}}

withψI=ψI=idQ8.{\displaystyle \psi _{I}=\psi _{-I}=\mathrm {id} _{\mathrm {Q} _{8}}.} In fact, these give the full automorphism group as:

Aut(Q8)PGL(2,3)=GL(2,3)/{±I}S4.{\displaystyle \operatorname {Aut} (\mathrm {Q} _{8})\cong \operatorname {PGL} (2,3)=\operatorname {GL} (2,3)/\{\pm I\}\cong S_{4}.}

This is isomorphic to the symmetric group S4 since the linear mappingsm:F32F32{\displaystyle m:\mathbb {F} _{3}^{2}\to \mathbb {F} _{3}^{2}} permute the four one-dimensional subspaces ofF32,{\displaystyle \mathbb {F} _{3}^{2},} i.e., the four points of theprojective spaceP1(F3)=PG(1,3).{\displaystyle \mathbb {P} ^{1}(\mathbb {F} _{3})=\operatorname {PG} (1,3).}

Also, this representation permutes the eight non-zero vectors ofF32,{\displaystyle \mathbb {F} _{3}^{2},} giving an embedding of Q8 in thesymmetric group S8, in addition to the embeddings given by the regular representations.

Galois group

[edit]

Richard Dedekind considered the fieldQ[2,3]{\displaystyle \mathbb {Q} [{\sqrt {2}},{\sqrt {3}}]} in attempting to relate the quaternion group toGalois theory.[7] In 1936Ernst Witt published his approach to the quaternion group through Galois theory.[8]

In 1981, Richard Dean showed the quaternion group can be realized as theGalois group Gal(T/Q) whereQ is the field ofrational numbers and T is thesplitting field of the polynomial

x872x6+180x4144x2+36{\displaystyle x^{8}-72x^{6}+180x^{4}-144x^{2}+36}.

The development uses thefundamental theorem of Galois theory in specifying four intermediate fields betweenQ and T and their Galois groups, as well as two theorems on cyclic extension of degree four over a field.[1]

Generalized quaternion group

[edit]

Ageneralized quaternion group Q4n of order 4n is defined by the presentation[3]

x,yx2n=y4=1,xn=y2,y1xy=x1{\displaystyle \langle x,y\mid x^{2n}=y^{4}=1,x^{n}=y^{2},y^{-1}xy=x^{-1}\rangle }

for an integern ≥ 2, with the usual quaternion group given byn = 2.[9]Coxeter calls Q4n thedicyclic group2,2,n{\displaystyle \langle 2,2,n\rangle }, a special case of thebinary polyhedral group,m,n{\displaystyle \langle \ell ,m,n\rangle } and related to thepolyhedral group(p,q,r){\displaystyle (p,q,r)} and thedihedral group(2,2,n){\displaystyle (2,2,n)}. The generalized quaternion group can be realized as the subgroup ofGL2(C){\displaystyle \operatorname {GL} _{2}(\mathbb {C} )} generated by

(ωn00ω¯n) and (0110){\displaystyle \left({\begin{array}{cc}\omega _{n}&0\\0&{\overline {\omega }}_{n}\end{array}}\right){\mbox{ and }}\left({\begin{array}{cc}0&-1\\1&0\end{array}}\right)}

whereωn=eiπ/n{\displaystyle \omega _{n}=e^{i\pi /n}}.[3] It can also be realized as the subgroup of unit quaternions generated by[10]x=eiπ/n{\displaystyle x=e^{i\pi /n}} andy=j{\displaystyle y=j}.

The generalized quaternion groups have the property that everyabelian subgroup is cyclic.[11] It can be shown that a finitep-group with this property (every abelian subgroup is cyclic) is either cyclic or a generalized quaternion group as defined above.[12] Another characterization is that a finitep-group in which there is a unique subgroup of orderp is either cyclic or a 2-group isomorphic to generalized quaternion group.[13] In particular, for a finite fieldF with odd characteristic, the 2-Sylow subgroup of SL2(F) is non-abelian and has only one subgroup of order 2, so this 2-Sylow subgroup must be a generalized quaternion group, (Gorenstein 1980, p. 42). Lettingpr be the size ofF, wherep is prime, the size of the 2-Sylow subgroup of SL2(F) is 2n, wheren = ord2(p2 − 1) + ord2(r).

TheBrauer–Suzuki theorem shows that the groups whose Sylow 2-subgroups are generalized quaternion cannot be simple.

Another terminology reserves the name "generalized quaternion group" for a dicyclic group of order a power of 2,[14] which admits the presentation

x,yx2m=y4=1,x2m1=y2,y1xy=x1.{\displaystyle \langle x,y\mid x^{2^{m}}=y^{4}=1,x^{2^{m-1}}=y^{2},y^{-1}xy=x^{-1}\rangle .}

See also

Notes

[edit]
  1. ^abDean, Richard (1981). "A Rational Polynomial whose Group is the Quaternions".The American Mathematical Monthly.88 (1):42–45.doi:10.2307/2320711.JSTOR 2320711.
  2. ^See alsoa table fromWolfram Alpha
  3. ^abcJohnson 1980, pp. 44–45
  4. ^See Hall (1999),p. 190
  5. ^See Kurosh (1979),p. 67
  6. ^Artin 1991
  7. ^Richard Dedekind (1887) "Konstrucktion der Quaternionkörpern", Ges. math. Werk II 376–84
  8. ^Ernst Witt (1936) "Konstruktion von galoisschen Körpern..."Crelle's Journal 174: 237-45
  9. ^Some authors (e.g.,Rotman 1995, pp. 87, 351) refer to this group as the dicyclic group, reserving the name generalized quaternion group to the case wheren is a power of 2.
  10. ^Brown 1982, p. 98
  11. ^Brown 1982, p. 101, exercise 1
  12. ^Cartan & Eilenberg 1999, Theorem 11.6, p. 262
  13. ^Brown 1982, Theorem 4.3, p. 99
  14. ^Roman, Steven (2011).Fundamentals of Group Theory: An Advanced Approach. Springer. pp. 347–348.ISBN 9780817683016.

References

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quaternion_group&oldid=1278359754"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp