Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Nonsyndromic deafness

From Wikipedia, the free encyclopedia
This articleneeds morereliable medical references forverification or relies too heavily onprimary sources. Please review the contents of the article andadd the appropriate references if you can. Unsourced or poorly sourced material may be challenged andremoved.Find sources: "Nonsyndromic deafness" – news ·newspapers ·books ·scholar ·JSTOR(November 2016)
Medical condition
Nonsyndromic deafness
Other namesNon-syndromic genetic deafness

Nonsyndromic deafness ishearing loss that is not associated with other signs and symptoms. In contrast, syndromicdeafness involves hearing loss that occurs with abnormalities in other parts of the body. Nonsyndromic deafness constitutes 75% of all hearing loss cases, and an estimated 100 genes are thought to be linked to this condition. About 80% are linked toautosomal recessive inheritance, 15% toautosomal dominant inheritance, 1-3% through the X chromosome, and 0.5-1% are associated withmitochondrial inheritance.[1][2]

Genetic changes are related to the following types of nonsyndromic deafness:

  • DFNA: nonsyndromic deafness, autosomal dominant
  • DFNB: nonsyndromic deafness, autosomal recessive
  • DFNX: nonsyndromic deafness,X-linked
  • nonsyndromic deafness,mitochondrial

Each type is numbered in the order in which it was described. For example, DFNA1 was the first described autosomal dominant type of nonsyndromic deafness. Mitochondrial nonsyndromic deafness involves changes to the small amount ofDNA found in mitochondria, the energy-producing centers within cells.[3]

Most forms of nonsyndromic deafness are associated with permanent hearing loss caused by damage to structures in the inner ear. The inner ear consists of three parts: a snail-shaped structure called thecochlea that helps process sound, nerves that send information from the cochlea to the brain, and structures involved with balance. Loss of hearing caused by changes in the inner ear is calledsensorineural deafness. Hearing loss that results from changes in themiddle ear is called conductive hearing loss. The middle ear contains three tinybones that help transfer sound from the eardrum to the inner ear. Some forms of nonsyndromic deafness involve changes in both the inner ear and the middle ear; this combination is called mixed hearing loss.

The severity of hearing loss varies and can change over time. It can affect one ear (unilateral) or both ears (bilateral). Degrees of hearing loss range from mild (difficulty understanding soft speech) to profound (inability to hear even very loud noises). The loss may be stable, or it may progress as a person gets older. Particular types of nonsyndromic deafness often show distinctive patterns of hearing loss. For example, the loss may be more pronounced at high, middle, or lowtones.

Classification

[edit]

Nonsyndromic deafness can occur at any age. Hearing loss that is present before a child learns to speak is classified asprelingual or congenital. Hearing loss that occurs after the development of speech is classified aspostlingual.

Genetics

[edit]

Nonsyndromic deafness can have different patterns of inheritance. Between 75% and 80% of cases are inherited in an autosomal recessive pattern, which means two copies of the gene in each cell are altered. Usually, each parent of an individual with autosomal recessive deafness is a carrier of one copy of the altered gene. These carriers do not have hearing loss.

Another 20% to 25% of nonsyndromic deafness cases are autosomal dominant, which means one copy of the altered gene in each cell is sufficient to result in hearing loss. People with autosomal dominant deafness most often inherit an altered copy of the gene from a parent who has hearing loss.

Between 1% and 2% of cases show an X-linked pattern of inheritance, which means the mutated gene responsible for the condition is located on the X chromosome. Males with X-linked nonsyndromic deafness tend to develop more severe hearing loss earlier in life than females who inherit a copy of the samegene mutation. Fathers will not pass X-linked traits to their sons since they do not pass on the X chromosome to their male offspring.

Mitochondrial nonsyndromic deafness, which results from changes to the DNA in mitochondria, occurs in fewer than 1% of cases in the United States. The altered mitochondrial DNA is passed from a mother to her sons and daughters. This type of deafness is not inherited from fathers.

Late-onset progressive deafness is the most common neurological disability of the elderly. Although hearing loss of greater than 25 decibels is present in only 1% of young adults between ages 18 and 24, this increases to 10% in persons between 55 and 64 years of age and approximately 50% in octogenarians.

The relative contribution of heredity to age-related hearing impairment is not known, however, the majority of inherited late-onset deafness is autosomal dominant and non-syndromic (Van Camp et al., 1997). Over forty genes associated with autosomal dominant non-syndromic hearing loss have been localized and of these fifteen have been cloned.

Genes related to nonsyndromic deafness

[edit]

Mutations in theACTG1,CABP2,CDH23,CLDN14,COCH,COL11A2,DFNA5,ESPN,EYA4,GJB2,GJB6,KCNQ4,MYO15A,MYO6,MYO7A,OTOF,PCDH15,POU3F4,SLC26A4,STRC,TECTA,TMC1,TMIE,TMPRSS3,USH1C, andWFS1 genes cause nonsyndromic deafness, with weaker evidence currently implicating genesCCDC50,DIAPH1,DSPP,ESRRB,GJB3,GRHL2,GRXCR1,HGF,LHFPL5,LOXHD1,LRTOMT,MARVELD2,MIR96,MYH14,MYH9,MYO1A,MYO3A,OTOA,PJVK,POU4F3,PRPS1,PTPRQ,RDX,SERPINB6,SIX1,SLC17A8,TPRN,TRIOBP,SLC26A5, andWHRN.

The causes of nonsyndromic deafness can be complex. Researchers have identified more than 30 genes that, when mutated, may cause nonsyndromic deafness; however, some of these genes have not been fully characterized. Many genes related to deafness are involved in the development and function of the inner ear. Gene mutations interfere with critical steps in processing sound, resulting in hearing loss. Different mutations in the same gene can cause different types of hearing loss, and some genes are associated with both syndromic and nonsyndromic deafness.In many families, the gene(s) involved have yet to be identified.

Deafness can also result from environmental factors or a combination of genetic andenvironmental factors, including certain medications, peri-natal infections (infections occurring before or after birth), and exposure to loud noise over an extended period.

Types include:

OMIMGeneType
124900DIAPH1DFNA1
600101KCNQ4DFNA2A
612644GJB3DFNA2B
601544GJB2DFNA3A
612643GJB6DFNA3B
600652MYH14DFNA4
600994DFNA5DFNA5
601543TECTADFNA8/12
601369COCHDFNA9
601316EYA4DFNA10
601317MYO7ADFNA11, neurosensory
601868COL11A2DFNA13
602459POU4F3DFNA15
603622MYH9DFNA17
604717ACTG1DFNA20/26
606346MYO6DFNA22
605192SIX1DFNA23
605583SLC17A8DFNA25
608641GRHL2DFNA28
606705TMC1DFNA36
605594DSPPDFNA36, with dentinogenesis
607453CCDC50DFNA44
607841MYO1ADFNA48
613074MIR96DFNA50
220290GJB2DFNB1A
612645GJB6DFNB1B
600060MYO7ADFNB2, neurosensory (see alsoUsher syndrome)
600316MYO15ADFNB3
600971TMIEDFNB6
600974TMC1DFNB7
601072TMPRSS3DFNB8, childhood onset
601071OTOFDFNB9
601386CDH23DFNB12
603720STRCDFNB16
602092USH1CDFNB18
603629TECTADFNB21
607039OTOADFNB22
609533PCDH15DFNB23
611022RDXDFNB24
613285GRXCR1DFNB25
609823TRIOBPDFNB28
614035CLDN14DFNB29
607101MYO3ADFNB30
607084WHRNDFNB31
608565ESRRBDFNB35
609006ESPNDFNB36
607821MYO6DFNB37
608265HGFDFNB39
610153MARVELD2DFNB49
609706COL11A2DFNB53
610220PJVKDFNB59
611451LRTOMTDFNB63
610265LHFPL5DFNB67
613079LOXHD1DFNB77
613307TPRNDFNB79
613391PTPRQDFNB84
613453SERPINB6DFNB91
614899CABP2DFNB93
304500PRPS1DFNX1
304400POU3F4DFNX2
580000MT-RNR1,COX1[4]deafness,aminoglycoside-induced
500008(several mtDNA)DFN, sensorineural, mt

Diagnosis

[edit]

The diagnosis of nonsyndromic deafness involves a comprehensive assessment to determine the cause of hearing loss in an individual without associated syndromic features. Key steps in the diagnosis may include:

  • Clinical evaluation: A detailed medical history will be obtained to identify factors that may contribute to hearing loss, such as exposure to loud noise, ototoxic medications, or a family history of hearing impairment. Additionally, a physical examination will be conducted to check for visible abnormalities or signs of underlying conditions.[5][6]
  • Genetic testing: Genetic testing may be recommended, especially if there is a family history of hearing loss. Nonsyndromic deafness can be caused by mutations in various genes associated with auditory function. Besides, high-throughput DNA sequencing methods can be employed to screen multiple genes simultaneously.[7]
  • Audiological testing: This may include different tests such asPure-tone audiometry, Speech audiometry,Otoacoustic emissions, orAuditory brainstem response.[8]

In some cases, other methods may be conducted, including imaging techniques such asCT orMRI, to examine the structures of the inner ear and identify any abnormalities in the cochlea orauditory nerve. Screening blood tests for metabolic conditions or infections that could contribute to hearing loss may also be recommended.[9][10]

Treatment

[edit]

Treatment is supportive and consists of management of- manifestations. Use of hearing aids and/or cochlear implants, suitable educational programs can be offered. Periodic surveillance is also important.[11]

Epidemiology

[edit]

About 1 in 1,000 children in the United States is born with profound deafness. By age 9, about 3 in 1,000 children have hearing loss that affects the activities of daily living. More than half of these cases are caused by genetic factors. Most cases of genetic deafness (70% to 80%) are nonsyndromic; the remaining cases are caused by specific genetic syndromes. In adults, the chance of developing hearing loss increases with age; hearing loss affects half of all people older than 80 years.

References

[edit]
  1. ^Guilford, Parry; Arab, Saida Ben; Blanchard, Stéphane; Levilliers, Jacqueline; Weissenbach, Jean; Belkahia, Ali; Petit, Christine (1994)."A non–syndromic form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q".Nature Genetics.6 (1):24–28.doi:10.1038/ng0194-24.ISSN 1061-4036.PMID 8136828.S2CID 19240967.
  2. ^Kalatzis, V (1998-09-01)."The fundamental and medical impacts of recent progress in research on hereditary hearing loss".Human Molecular Genetics.7 (10):1589–1597.doi:10.1093/hmg/7.10.1589.ISSN 1460-2083.PMID 9735380.
  3. ^Reference, Genetics Home."nonsyndromic hearing loss".Genetics Home Reference. Retrieved14 April 2017.
  4. ^Usami, S; Nishio, S; Adam, MP; Ardinger, HH; Pagon, RA; Wallace, SE; Bean, LJH; Stephens, K; Amemiya, A (1993)."Nonsyndromic Hearing Loss and Deafness, Mitochondrial". University of Washington, Seattle.PMID 20301595.
  5. ^Vona, Barbara; Doll, Julia; Hofrichter, Michaela A. H.; Haaf, Thomas (2020-08-01)."Non-syndromic hearing loss: clinical and diagnostic challenges".Medizinische Genetik.32 (2):117–129.doi:10.1515/medgen-2020-2022.ISSN 1863-5490.S2CID 222005315.
  6. ^Funamura, Jamie L. (2017)."Evaluation and management of nonsyndromic congenital hearing loss".Current Opinion in Otolaryngology & Head and Neck Surgery.25 (5):385–389.doi:10.1097/moo.0000000000000398.ISSN 1068-9508.PMID 28682819.S2CID 11889662.
  7. ^Sloan-Heggen, Christina M.; Bierer, Amanda O.; Shearer, A. Eliot; Kolbe, Diana L.; Nishimura, Carla J.; Frees, Kathy L.; Ephraim, Sean S.; Shibata, Seiji B.; Booth, Kevin T.; Campbell, Colleen A.; Ranum, Paul T.; Weaver, Amy E.; Black-Ziegelbein, E. Ann; Wang, Donghong; Azaiez, Hela (2016-03-11)."Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss".Human Genetics.135 (4):441–450.doi:10.1007/s00439-016-1648-8.ISSN 0340-6717.PMC 4796320.PMID 26969326.
  8. ^Vona, Barbara; Doll, Julia; Hofrichter, Michaela A. H.; Haaf, Thomas (2020-08-01)."Non-syndromic hearing loss: clinical and diagnostic challenges".Medizinische Genetik.32 (2):117–129.doi:10.1515/medgen-2020-2022.ISSN 1863-5490.S2CID 222005315.
  9. ^Sommen, Manou; van Camp, Guy; Boudewyns, An (2013)."Genetic and clinical diagnosis in non-syndromic hearing loss".Hearing, Balance and Communication.11 (3):138–145.doi:10.3109/21695717.2013.812380.ISSN 2169-5717.S2CID 73090556.
  10. ^Hone, S.W.; Smith, R.J.H. (2003)."Genetic screening for hearing loss".Clinical Otolaryngology and Allied Sciences.28 (4):285–290.doi:10.1046/j.1365-2273.2003.00700.x.ISSN 0307-7772.PMID 12871240.
  11. ^Smith, Richard JH; Jones, Mary-Kayt N. (1993)."Nonsyndromic Hearing Loss and Deafness, DFNB1".GeneReviews. University of Washington, Seattle.PMID 20301449.

Further reading

[edit]

External links

[edit]
Classification
External resources
Disorders ofhearing andbalance
Hearing
Symptoms
Disease
Loss
Other
Tests
Balance
Symptoms
Disease
Tests
Cytoskeletal defects
Microfilaments
Myofilament
Actin
Myosin
Troponin
Tropomyosin
Titin
Other
IF
1/2
3
4
5
Microtubules
Kinesin
Dynein
Other
Membrane
Catenin
Other
Related topics:Cytoskeletal proteins
Genetic disorders relating to deficiencies oftranscription factor or coregulators
(1) Basic domains
1.2
1.3
(2) Zinc finger
DNA-binding domains
2.1
2.2
2.3
2.5
(3) Helix-turn-helix domains
3.1
3.2
3.3
3.5
(4) β-Scaffold factors
with minor groove contacts
4.2
4.3
4.7
4.11
(0) Other transcription factors
0.6
Ungrouped
Transcription coregulators
Coactivator:
Corepressor:
Diseases ofcollagen,laminin and otherscleroproteins
Collagen disease
COL1:
COL2:
COL3:
COL4:
COL5:
COL6:
COL7:
COL8:
COL9:
COL10:
COL11:
COL12:
COL17:
COL18:
Laminin
Other
Genetic disorder, membrane:Solute carrier disorders
1-10
11-20
21-40
51-60
Retrieved from "https://en.wikipedia.org/w/index.php?title=Nonsyndromic_deafness&oldid=1275625817"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp