Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Morphology (biology)

From Wikipedia, the free encyclopedia
Study of external forms and structures of organisms
This article is about the term in biology. For other uses, seeMorphology.
Morphology of a male skeleton shrimp,Caprella mutica

Morphology (from Ancient Greek μορφή (morphḗ) "form", and λόγος (lógos) "word, study, research") is the study of the form and structure oforganisms and their specific structural features.[1]

This includes aspects of the outward appearance (shape, structure, color, pattern, size), as well as the form and structure of internal parts likebones andorgans, i.e.,anatomy. This is in contrast tophysiology, which deals primarily with function. Morphology is a branch oflife science dealing with the study of the overall structure of anorganism ortaxon and its component parts.

History

[edit]

Theetymology of the word "morphology" is from theAncient Greekμορφή (morphḗ), meaning "form", andλόγος (lógos), meaning "word, study, research".[2][3]

While the concept of form in biology, opposed tofunction, dates back to Aristotle (seeAristotle's biology), the field of morphology was developed byJohann Wolfgang von Goethe (1790) and independently by the German anatomist and physiologistKarl Friedrich Burdach (1800).[4]

Among other important theorists of morphology areLorenz Oken,Georges Cuvier,Étienne Geoffroy Saint-Hilaire,Richard Owen,Carl Gegenbaur andErnst Haeckel.[5][6]

In 1830, Cuvier and Saint-Hilaire engaged ina famous debate, which is said to exemplify the two major deviations in biological thinking at the time – whether animal structure was due to function or evolution.[7]

Divisions of morphology

[edit]
  • Comparative morphology is an analysis of the patterns of the locus of structures within the body plan of an organism, and forms the basis of taxonomical categorization.
  • Functional morphology is the study of the relationship between the structure and function of morphological features.
  • Experimental morphology is the study of the effects of external factors upon the morphology of organisms under experimental conditions, such as the effect of genetic mutation.
  • Anatomy is a "branch of morphology that deals with the structure oforganisms".[8]
  • Molecular morphology is a rarely used term, usually referring to the superstructure of polymers such as fiber formation[9] or to larger composite assemblies. The term is commonly not applied to the spatial structure of individualmolecules.
  • Gross morphology refers to the collective structures of an organism as a whole as a general description of the form and structure of an organism, taking into account all of its structures without specifying an individual structure.

Morphology and classification

[edit]

Mosttaxa differ morphologically from other taxa. Typically, closely related taxa differ much less than more distantly related ones, but there are exceptions to this.Cryptic species arespecies which look very similar, or perhaps even outwardly identical, but are reproductively isolated. Conversely, sometimes unrelated taxa acquire a similar appearance as a result ofconvergent evolution or evenmimicry. In addition, there can be morphological differences within a species, such as inApoica flavissima where queens are significantly smaller than workers. A further problem with relying on morphological data is that what may appear morphologically to be two distinct species may in fact be shown byDNA analysis to be a single species. The significance of these differences can be examined through the use ofallometric engineering in which one or both species are manipulated to phenocopy the other species.

A step relevant to the evaluation of morphology between traits/features within species, includes an assessment of the terms:homology andhomoplasy. Homology between features indicates that those features have been derived from a common ancestor.[10] Alternatively, homoplasy between features describes those that can resemble each other, but derive independently viaparallel orconvergent evolution.[11]

3D cell morphology: classification

[edit]

The invention and development of microscopy enabled the observation of 3-D cell morphology with both high spatial and temporal resolution. The dynamic processes of this cell morphology which are controlled by acomplex system play an important role in varied important biological processes, such as immune and invasive responses.[12][13]

See also

[edit]

References

[edit]
  1. ^"Morphology Definition of Morphology by Oxford Dictionary on Lexico.com also meaning of Morphology".Lexico DictionariesEnglish. Archived fromthe original on March 5, 2020.
  2. ^Bailly, Anatole (1981-01-01).Abrégé du dictionnaire grec français. Paris: Hachette.ISBN 2010035283.OCLC 461974285.
  3. ^Bailly, Anatole."Greek-french dictionary online".www.tabularium.be. Retrieved2020-02-11.
  4. ^Mägdefrau, Karl (1992).Geschichte der Botanik [History of Botany] (2 ed.). Jena: Gustav Fischer Verlag.ISBN 3-437-20489-0.
  5. ^Richards, R. J. (2008). A Brief History of Morphology. In:The Tragic Sense of Life. Ernst Haeckel and the Struggle over Evolutionary Thought. Chicago: University of Chicago Press.
  6. ^Di Gregorio, M. A. (2005).From Here to Eternity: Ernst Haeckel and Scientific Faith. Gottingen: Vandenhoeck & Ruprecht.
  7. ^Appel, Toby (1987).The Cuvier-Geoffroy Debate: French Biology in the Decades Before DarwinArchived 2022-12-08 at theWayback Machine. New York: Oxford University Press.
  8. ^"Anatomy – Definition of anatomy by Merriam-Webster".merriam-webster.com. 23 September 2023.
  9. ^"Polymer Morphology". ceas.uc.edu/. Retrieved2010-06-24.
  10. ^Lincoln, Roger J. (1998).A dictionary of ecology, evolution, and systematics. Boxshall, Geoffrey Allan.; Clark, P. F. (2nd ed.). Cambridge: Cambridge University Press.ISBN 052143842X.OCLC 36011744.
  11. ^Pough, F. Harvey (2009).Vertebrate life. Janis, Christine M.; Heiser, John B. (8th ed.). San Francisco: Benjamin Cummings.ISBN 978-0321545763.OCLC 184829042.
  12. ^Doyle, A. D.; Petrie, R. J.; Kutys, M. L.; Yamada, K. M. (2013)."Dimensions in Cell Migration".Current Opinion in Cell Biology.25 (5):642–649.doi:10.1016/j.ceb.2013.06.004.PMC 3758466.PMID 23850350.
  13. ^Dufour, Alexandre Cecilien; Liu, Tzu-Yu; Ducroz, Christel; Tournemenne, Robin; Cummings, Beryl; Thibeaux, Roman; Guillen, Nancy; Hero, Alfred O.; Olivo-Marin, Jean-Christophe (2015)."Signal Processing Challenges in Quantitative 3-D Cell Morphology: More than meets the eye".IEEE Signal Processing Magazine.32 (1):30–40.Bibcode:2015ISPM...32...30D.doi:10.1109/MSP.2014.2359131.S2CID 12630747.

External links

[edit]
Fields
Endoskeleton of an elephant
Bacteria and fungi
Protists
Plants
Invertebrates
Mammals
Other vertebrates
Glossaries
Related topics
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Morphology_(biology)&oldid=1284396518"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp