Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Monotone likelihood ratio

From Wikipedia, the free encyclopedia
Statistical property
A monotonic likelihood ratio in distributions f(x) {\displaystyle \ f(x)\ } and g(x) {\displaystyle \ g(x)\ }

The ratio of thedensity functions above is monotone in the parameter x ,{\displaystyle \ x\ ,} so  f(x) g(x) {\displaystyle \ {\frac {\ f(x)\ }{g(x)}}\ } satisfies themonotone likelihood ratio property.

Instatistics, themonotone likelihood ratio property is a property of the ratio of twoprobability density functions (PDFs). Formally, distributions f(x) {\displaystyle \ f(x)\ } and g(x) {\displaystyle \ g(x)\ } bear the property if

 for every x2>x1,f(x2) g(x2) f(x1) g(x1)  {\displaystyle \ {\text{for every }}x_{2}>x_{1},\quad {\frac {f(x_{2})}{\ g(x_{2})\ }}\geq {\frac {f(x_{1})}{\ g(x_{1})\ }}\ }

that is, if the ratio is nondecreasing in the argumentx{\displaystyle x}.

If the functions are first-differentiable, the property may sometimes be stated

  x(f(x) g(x) )0 {\displaystyle {\frac {\ \partial }{\ \partial x}}\left({\frac {f(x)}{\ g(x)\ }}\right)\geq 0\ }

For two distributions that satisfy the definition with respect to some argument x ,{\displaystyle \ x\ ,} we say they "have the MLRP in x .{\displaystyle \ x~.}" For a family of distributions that all satisfy the definition with respect to some statistic T(X) ,{\displaystyle \ T(X)\ ,} we say they "have the MLR in T(X) .{\displaystyle \ T(X)~.}"

Intuition

[edit]

The MLRP is used to represent a data-generating process that enjoys a straightforward relationship between the magnitude of some observed variable and the distribution it draws from. If f(x) {\displaystyle \ f(x)\ } satisfies the MLRP with respect to g(x) {\displaystyle \ g(x)\ }, the higher the observed value x {\displaystyle \ x\ }, the more likely it was drawn from distribution f {\displaystyle \ f\ } rather than g .{\displaystyle \ g~.} As usual for monotonic relationships, the likelihood ratio's monotonicity comes in handy in statistics, particularly when usingmaximum-likelihoodestimation. Also, distribution families with MLR have a number of well-behaved stochastic properties, such asfirst-order stochastic dominance and increasinghazard ratios. Unfortunately, as is also usual, the strength of this assumption comes at the price of realism. Many processes in the world do not exhibit a monotonic correspondence between input and output.

Example: Working hard or slacking off

[edit]

Suppose you are working on a project, and you can either work hard or slack off. Call your choice of effort e {\displaystyle \ e\ } and the quality of the resulting project q .{\displaystyle \ q~.} If the MLRP holds for the distribution of q {\displaystyle \ q\ } conditional on your effort e {\displaystyle \ e\ }, the higher the quality the more likely you worked hard. Conversely, the lower the quality the more likely you slacked off.

1: Choose effort e{H,L} {\displaystyle \ e\in \{H,L\}\ } where H {\displaystyle \ H\ } means high effort, and L {\displaystyle \ L\ } means low effort.
2: Observe q {\displaystyle \ q\ } drawn from f(q | e) .{\displaystyle \ f(q\ |\ e)~.} ByBayes' law with auniform prior,
 P[ e=H | q ]=f(q | H) f(q | H)+f(q | L)  {\displaystyle \ \operatorname {\mathbb {P} } {\bigl [}\ e=H\ {\big |}\ q\ {\bigr ]}={\frac {f(q\ |\ H)}{\ f(q\ |\ H)+f(q\ |\ L)\ }}\ }
3: Suppose f(q | e) {\displaystyle \ f(q\ |\ e)\ } satisfies the MLRP. Rearranging, the probability the worker worked hard is
 1 1+f(q | L)/f(q | H)  {\displaystyle \ {\frac {1}{\ 1+f(q\ |\ L)/f(q\ |\ H)\ }}\ }
which, thanks to the MLRP, is monotonically increasing in q {\displaystyle \ q\ } (because f(q | L) f(q | H)  {\displaystyle \ {\frac {f(q\ |\ L)}{\ f(q\ |\ H)\ }}\ } is decreasing in q {\displaystyle \ q\ }).

Hence if some employer is doing a "performance review" he can infer his employee's behavior from the merits of his work.

Families of distributions satisfying MLR

[edit]

Statistical models often assume that data are generated by a distribution from some family of distributions and seek to determine that distribution. This task is simplified if the family has the monotone likelihood ratio property (MLRP).

A family of density functions { fθ(x) | θΘ } {\displaystyle \ {\bigl \{}\ f_{\theta }(x)\ {\big |}\ \theta \in \Theta \ {\bigr \}}\ } indexed by a parameter θ {\displaystyle \ \theta \ } taking values in an ordered set Θ {\displaystyle \ \Theta \ } is said to have amonotone likelihood ratio (MLR) in thestatistic T(X) {\displaystyle \ T(X)\ } if for any θ1<θ2 ,{\displaystyle \ \theta _{1}<\theta _{2}\ ,}

 fθ2(X=x1, x2, x3,  ) fθ1(X=x1, x2, x3,  )  {\displaystyle \ {\frac {f_{\theta _{2}}(X=x_{1},\ x_{2},\ x_{3},\ \ldots \ )}{\ f_{\theta _{1}}(X=x_{1},\ x_{2},\ x_{3},\ \ldots \ )\ }}\ } is a non-decreasing function of T(X) .{\displaystyle \ T(X)~.}

Then we say the family of distributions "has MLR in T(X) {\displaystyle \ T(X)\ }".

List of families

[edit]
Family   T(X) {\displaystyle \ T(X)\ } in which fθ(X) {\displaystyle \ f_{\theta }(X)\ } has the MLR   
 Exponential[λ] {\displaystyle [\lambda ]\ }      xi {\displaystyle \ \sum x_{i}\ } observations
 Binomial[n,p] {\displaystyle [n,p]\ }      xi {\displaystyle \ \sum x_{i}\ } observations
 Poisson[λ] {\displaystyle [\lambda ]\ }      xi {\displaystyle \ \sum x_{i}\ } observations
 Normal[μ,σ] {\displaystyle [\mu ,\sigma ]\ }     if σ {\displaystyle \ \sigma \ } known, xi {\displaystyle \ \sum x_{i}\ } observations

Hypothesis testing

[edit]

If the family of random variables has the MLRP in T(X) ,{\displaystyle \ T(X)\ ,} auniformly most powerful test can easily be determined for the hypothesis H0 : θθ0 {\displaystyle \ H_{0}\ :\ \theta \leq \theta _{0}\ } versus H1 : θ>θ0 .{\displaystyle \ H_{1}\ :\ \theta >\theta _{0}~.}

Example: Effort and output

[edit]

Example: Let e {\displaystyle \ e\ } be an input into a stochastic technology – worker's effort, for instance – and y {\displaystyle \ y\ } its output, the likelihood of which is described by a probability density function f(y;e) .{\displaystyle \ f(y;e)~.} Then the monotone likelihood ratio property (MLRP) of the family f {\displaystyle \ f\ } is expressed as follows: For any e1,e2 ,{\displaystyle \ e_{1},e_{2}\ ,} the fact thate2>e1{\displaystyle e_{2}>e_{1}} implies that the ratio  f(y;e2) f(y;e1) {\displaystyle \ {\frac {\ f(y;e_{2})\ }{f(y;e_{1})}}\ } is increasing in y .{\displaystyle \ y~.}

Relation to other statistical properties

[edit]

Monotone likelihoods are used in several areas of statistical theory, includingpoint estimation andhypothesis testing, as well as inprobability models.

Exponential families

[edit]

One-parameterexponential families have monotone likelihood-functions. In particular, the one-dimensional exponential family ofprobability density functions orprobability mass functions with

 fθ(x)=c(θ) h(x) exp( π(θ) T(x) ) {\displaystyle \ f_{\theta }(x)=c(\theta )\ h(x)\ \exp {\Bigl (}\ \pi \left(\theta \right)\ T\left(x\right)\ {\Bigr )}\ }

has a monotone non-decreasing likelihood ratio in thesufficient statistic T(x) ,{\displaystyle \ T(x)\ ,} provided that π(θ) {\displaystyle \ \pi (\theta )\ } is non-decreasing.

Uniformly most powerful tests: The Karlin–Rubin theorem

[edit]

Monotone likelihood functions are used to constructuniformly most powerful tests, according to theKarlin–Rubin theorem.[1]Consider a scalar measurement having a probability density function parameterized by a scalar parameter θ ,{\displaystyle \ \theta \ ,} and define the likelihood ratio (x)=fθ1(x) fθ0(x)  .{\displaystyle \ \ell (x)={\frac {f_{\theta _{1}}(x)}{\ f_{\theta _{0}}(x)\ }}~.} If (x) {\displaystyle \ \ell (x)\ } is monotone non-decreasing, in x ,{\displaystyle \ x\ ,} for any pair θ1θ0 {\displaystyle \ \theta _{1}\geq \theta _{0}\ } (meaning that the greater x {\displaystyle \ x\ } is, the more likely H1 {\displaystyle \ H_{1}\ } is), then the threshold test:

 φ(x)={1if x>x00if x<x0 {\displaystyle \ \varphi (x)={\begin{cases}1&{\text{if }}x>x_{0}\\0&{\text{if }}x<x_{0}\end{cases}}\ }
where x0 {\displaystyle \ x_{0}\ } is chosen so that E{ φ(X) | θ0 }=α {\displaystyle \ \operatorname {\mathbb {E} } {\bigl \{}\ \varphi (X)\ {\big |}\ \theta _{0}\ {\bigr \}}=\alpha \ }

is the UMP test of size α {\displaystyle \ \alpha \ } for testing H0 : θθ0  {\displaystyle \ H_{0}\ :\ \theta \leq \theta _{0}~~} vs.  H1:θ>θ0 .{\displaystyle ~~H_{1}:\theta >\theta _{0}~.}

Note that exactly the same test is also UMP for testing H0 : θ=θ0  {\displaystyle \ H_{0}\ :\ \theta =\theta _{0}~~} vs.  H1:θ>θ0 .{\displaystyle ~~H_{1}:\theta >\theta _{0}~.}

Median unbiased estimation

[edit]

Monotone likelihood-functions are used to constructmedian-unbiased estimators, using methods specified byJohann Pfanzagl and others.[2][3]One such procedure is an analogue of theRao–Blackwell procedure formean-unbiased estimators: The procedure holds for a smaller class of probability distributions than does the Rao–Blackwell procedure for mean-unbiased estimation but for a larger class ofloss functions.[3]: 713 

Lifetime analysis: Survival analysis and reliability

[edit]

If a family of distributions fθ(x) {\displaystyle \ f_{\theta }(x)\ } has the monotone likelihood ratio property in T(X) ,{\displaystyle \ T(X)\ ,}

  1. the family has monotone decreasinghazard rates in θ {\displaystyle \ \theta \ } (but not necessarily in T(X) {\displaystyle \ T(X)\ })
  2. the family exhibits the first-order (and hence second-order)stochastic dominance in x ,{\displaystyle \ x\ ,} and the best Bayesian update of θ {\displaystyle \ \theta \ } is increasing inT(X){\displaystyle T(X)}.

But not conversely: neither monotone hazard rates nor stochastic dominance imply the MLRP.

Proofs

[edit]

Let distribution family fθ {\displaystyle \ f_{\theta }\ } satisfy MLR in x ,{\displaystyle \ x\ ,} so that for θ1>θ0 {\displaystyle \ \theta _{1}>\theta _{0}\ } and x1>x0 :{\displaystyle \ x_{1}>x_{0}\ :}

 fθ1(x1) fθ0(x1)  fθ1(x0) fθ0(x0) ,{\displaystyle \ {\frac {f_{\theta _{1}}(x_{1})}{\ f_{\theta _{0}}(x_{1})\ }}\geq {\frac {\ f_{\theta _{1}}(x_{0})\ }{f_{\theta _{0}}(x_{0})}}\ ,}

or equivalently:

 fθ1(x1) fθ0(x0)fθ1(x0) fθ0(x1) .{\displaystyle \ f_{\theta _{1}}(x_{1})\ f_{\theta _{0}}(x_{0})\geq f_{\theta _{1}}(x_{0})\ f_{\theta _{0}}(x_{1})~.}

Integrating this expression twice, we obtain:

1. To x1 {\displaystyle \ x_{1}\ } with respect to x0 {\displaystyle \ x_{0}\ }
minXx1 fθ1(x1) fθ0(x0) dx0minXx1 fθ1(x0) fθ0(x1) dx0{\displaystyle {\begin{aligned}&\int _{\min X}^{x_{1}}\ f_{\theta _{1}}(x_{1})\ f_{\theta _{0}}(x_{0})\ \mathrm {d} x_{0}\\[6pt]\geq {}&\int _{\min X}^{x_{1}}\ f_{\theta _{1}}(x_{0})\ f_{\theta _{0}}(x_{1})\ \mathrm {d} x_{0}\end{aligned}}}

integrate and rearrange to obtain

fθ1(x) fθ0(x) Fθ1(x) Fθ0(x)  {\displaystyle {\frac {f_{\theta _{1}}(x)}{\ f_{\theta _{0}}(x)\ }}\geq {\frac {F_{\theta _{1}}(x)}{\ F_{\theta _{0}}(x)\ }}\ }
2. Fromx0{\displaystyle x_{0}} with respect to x1 {\displaystyle \ x_{1}\ }
x0maxX fθ1(x1) fθ0(x0) dx1x0maxX fθ1(x0) fθ0(x1) dx1{\displaystyle {\begin{aligned}&\int _{x_{0}}^{\max X}\ f_{\theta _{1}}(x_{1})\ f_{\theta _{0}}(x_{0})\ \mathrm {d} x_{1}\\[6pt]\geq {}&\int _{x_{0}}^{\max X}\ f_{\theta _{1}}(x_{0})\ f_{\theta _{0}}(x_{1})\ \mathrm {d} x_{1}\end{aligned}}}

integrate and rearrange to obtain

1Fθ1(x) 1Fθ0(x) fθ1(x) fθ0(x)  {\displaystyle {\frac {1-F_{\theta _{1}}(x)}{\ 1-F_{\theta _{0}}(x)\ }}\geq {\frac {f_{\theta _{1}}(x)}{\ f_{\theta _{0}}(x)\ }}\ }

First-order stochastic dominance

[edit]

Combine the two inequalities above to get first-order dominance:

Fθ1(x)Fθ0(x) x {\displaystyle F_{\theta _{1}}(x)\leq F_{\theta _{0}}(x)~\forall x\ }

Monotone hazard rate

[edit]

Use only the second inequality above to get a monotone hazard rate:

 fθ1(x) 1Fθ1(x) fθ0(x) 1Fθ0(x)  x {\displaystyle \ {\frac {f_{\theta _{1}}(x)}{\ 1-F_{\theta _{1}}(x)\ }}\leq {\frac {f_{\theta _{0}}(x)}{\ 1-F_{\theta _{0}}(x)\ }}~\forall x\ }

Uses

[edit]

Economics

[edit]

The MLR is an important condition on the type distribution of agents inmechanism design andeconomics of information, wherePaul Milgrom defined "favorableness" of signals (in terms of stochastic dominance) as a consequence of MLR.[4]Most solutions to mechanism design models assume type distributions that satisfy the MLR to take advantage of solution methods that may be easier to apply and interpret.

References

[edit]
  1. ^Casella, G.; Berger, R.L. (2008). "Theorem 8.3.17".Statistical Inference. Brooks / Cole.ISBN 0-495-39187-5.
  2. ^Pfanzagl, Johann (1979)."On optimal median unbiased estimators in the presence of nuisance parameters".Annals of Statistics.7 (1):187–193.doi:10.1214/aos/1176344563.
  3. ^abBrown, L.D.; Cohen, Arthur; Strawderman, W.E. (1976)."A complete class theorem for strict monotone likelihood ratio with applications".Annals of Statistics.4 (4):712–722.doi:10.1214/aos/1176343543.
  4. ^Milgrom, P.R. (1981). "Good news and bad news: Representation theorems and applications".The Bell Journal of Economics.12 (2):380–391.doi:10.2307/3003562.
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Monotone_likelihood_ratio&oldid=1214330432"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp