Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Leibniz integral rule

From Wikipedia, the free encyclopedia
Differentiation under the integral sign formula
This article is about the integral rule. For the convergence test for alternating series, seeAlternating series test.
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Leibniz integral rule" – news ·newspapers ·books ·scholar ·JSTOR
(October 2016) (Learn how and when to remove this message)
Part of a series of articles about
Calculus
abf(t)dt=f(b)f(a){\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}

Incalculus, theLeibniz integral rule for differentiation under the integral sign, named afterGottfried Wilhelm Leibniz, states that for anintegral of the forma(x)b(x)f(x,t)dt,{\displaystyle \int _{a(x)}^{b(x)}f(x,t)\,dt,}where<a(x),b(x)<{\displaystyle -\infty <a(x),b(x)<\infty } and the integrands arefunctions dependent onx,{\displaystyle x,} the derivative of this integral is expressible asddx(a(x)b(x)f(x,t)dt)=f(x,b(x))ddxb(x)f(x,a(x))ddxa(x)+a(x)b(x)xf(x,t)dt{\displaystyle {\begin{aligned}&{\frac {d}{dx}}\left(\int _{a(x)}^{b(x)}f(x,t)\,dt\right)\\&=f{\big (}x,b(x){\big )}\cdot {\frac {d}{dx}}b(x)-f{\big (}x,a(x){\big )}\cdot {\frac {d}{dx}}a(x)+\int _{a(x)}^{b(x)}{\frac {\partial }{\partial x}}f(x,t)\,dt\end{aligned}}}where thepartial derivativex{\displaystyle {\tfrac {\partial }{\partial x}}} indicates that inside the integral, only the variation off(x,t){\displaystyle f(x,t)} withx{\displaystyle x} is considered in taking the derivative.[1]

In the special case where the functionsa(x){\displaystyle a(x)} andb(x){\displaystyle b(x)} are constantsa(x)=a{\displaystyle a(x)=a} andb(x)=b{\displaystyle b(x)=b} with values that do not depend onx,{\displaystyle x,} this simplifies to:ddx(abf(x,t)dt)=abxf(x,t)dt.{\displaystyle {\frac {d}{dx}}\left(\int _{a}^{b}f(x,t)\,dt\right)=\int _{a}^{b}{\frac {\partial }{\partial x}}f(x,t)\,dt.}

Ifa(x)=a{\displaystyle a(x)=a} is constant andb(x)=x{\displaystyle b(x)=x}, which is another common situation (for example, in the proof ofCauchy's repeated integration formula), the Leibniz integral rule becomes:ddx(axf(x,t)dt)=f(x,x)+axxf(x,t)dt,{\displaystyle {\frac {d}{dx}}\left(\int _{a}^{x}f(x,t)\,dt\right)=f{\big (}x,x{\big )}+\int _{a}^{x}{\frac {\partial }{\partial x}}f(x,t)\,dt,}

This important result may, under certain conditions, be used to interchange the integral and partial differentialoperators, and is particularly useful in the differentiation ofintegral transforms. An example of such is themoment generating function inprobability theory, a variation of theLaplace transform, which can be differentiated to generate themoments of arandom variable. Whether Leibniz's integral rule applies is essentially a question about the interchange oflimits.

General form: differentiation under the integral sign

[edit]

TheoremLetf(x,t){\displaystyle f(x,t)} be a function such that bothf(x,t){\displaystyle f(x,t)} and its partial derivativefx(x,t){\displaystyle f_{x}(x,t)} are continuous int{\displaystyle t} andx{\displaystyle x} in some region of thext{\displaystyle xt}-plane, includinga(x)tb(x),{\displaystyle a(x)\leq t\leq b(x),}x0xx1.{\displaystyle x_{0}\leq x\leq x_{1}.} Also suppose that the functionsa(x){\displaystyle a(x)} andb(x){\displaystyle b(x)} are both continuous and both have continuous derivatives forx0xx1.{\displaystyle x_{0}\leq x\leq x_{1}.} Then, forx0xx1,{\displaystyle x_{0}\leq x\leq x_{1},}ddx(a(x)b(x)f(x,t)dt)=f(x,b(x))ddxb(x)f(x,a(x))ddxa(x)+a(x)b(x)xf(x,t)dt.{\displaystyle {\frac {d}{dx}}\left(\int _{a(x)}^{b(x)}f(x,t)\,dt\right)=f{\big (}x,b(x){\big )}\cdot {\frac {d}{dx}}b(x)-f{\big (}x,a(x){\big )}\cdot {\frac {d}{dx}}a(x)+\int _{a(x)}^{b(x)}{\frac {\partial }{\partial x}}f(x,t)\,dt.}

The right hand side may also be written usingLagrange's notation as:f(x,b(x))b(x)f(x,a(x))a(x)+a(x)b(x)fx(x,t)dt.{\textstyle f(x,b(x))\,b^{\prime }(x)-f(x,a(x))\,a^{\prime }(x)+\displaystyle \int _{a(x)}^{b(x)}f_{x}(x,t)\,dt.}

Stronger versions of the theorem only require that the partial derivative existalmost everywhere, and not that it be continuous.[2] This formula is the general form of the Leibniz integral rule and can be derived using thefundamental theorem of calculus. The (first) fundamental theorem of calculus is just the particular case of the above formula wherea(x)=aR{\displaystyle a(x)=a\in \mathbb {R} } is constant,b(x)=x,{\displaystyle b(x)=x,} andf(x,t)=f(t){\displaystyle f(x,t)=f(t)} does not depend onx.{\displaystyle x.}

If both upper and lower limits are taken as constants, then the formula takes the shape of anoperator equation:Itx=xIt{\displaystyle {\mathcal {I}}_{t}\partial _{x}=\partial _{x}{\mathcal {I}}_{t}}wherex{\displaystyle \partial _{x}} is thepartial derivative with respect tox{\displaystyle x} andIt{\displaystyle {\mathcal {I}}_{t}} is the integral operator with respect tot{\displaystyle t} over a fixedinterval. That is, it is related to thesymmetry of second derivatives, but involving integrals as well as derivatives. This case is also known as the Leibniz integral rule.

The following three basic theorems on theinterchange of limits are essentially equivalent:

  • the interchange of a derivative and an integral (differentiation under the integral sign; i.e., Leibniz integral rule);
  • the change of order of partial derivatives;
  • the change of order of integration (integration under the integral sign; i.e.,Fubini's theorem).

Three-dimensional, time-dependent case

[edit]
Figure 1: A vector fieldF(r,t) defined throughout space, and a surface Σ bounded by curve ∂Σ moving with velocityv over which the field is integrated.

A Leibniz integral rule for atwo dimensional surface moving in three dimensional space is[3][4]

ddtΣ(t)F(r,t)dA=Σ(t)(Ft(r,t)+[F(r,t)]v)dAΣ(t)[v×F(r,t)]ds,{\displaystyle {\frac {d}{dt}}\iint _{\Sigma (t)}\mathbf {F} (\mathbf {r} ,t)\cdot d\mathbf {A} =\iint _{\Sigma (t)}\left(\mathbf {F} _{t}(\mathbf {r} ,t)+\left[\nabla \cdot \mathbf {F} (\mathbf {r} ,t)\right]\mathbf {v} \right)\cdot d\mathbf {A} -\oint _{\partial \Sigma (t)}\left[\mathbf {v} \times \mathbf {F} (\mathbf {r} ,t)\right]\cdot d\mathbf {s} ,}

where:

  • F(r,t) is a vector field at the spatial positionr at timet,
  • Σ is a surface bounded by the closed curve∂Σ,
  • dA is a vector element of the surfaceΣ,
  • ds is a vector element of the curve∂Σ,
  • v is the velocity of movement of the regionΣ,
  • ∇⋅ is the vectordivergence,
  • × is thevector cross product,
  • The double integrals aresurface integrals over the surfaceΣ, and theline integral is over the bounding curve∂Σ.

Higher dimensions

[edit]

The Leibniz integral rule can be extended to multidimensional integrals. In two and three dimensions, this rule is better known from the field offluid dynamics as theReynolds transport theorem:ddtD(t)F(x,t)dV=D(t)tF(x,t)dV+D(t)F(x,t)vbdΣ,{\displaystyle {\frac {d}{dt}}\int _{D(t)}F(\mathbf {x} ,t)\,dV=\int _{D(t)}{\frac {\partial }{\partial t}}F(\mathbf {x} ,t)\,dV+\int _{\partial D(t)}F(\mathbf {x} ,t)\mathbf {v} _{b}\cdot d\mathbf {\Sigma } ,}

whereF(x,t){\displaystyle F(\mathbf {x} ,t)} is a scalar function,D(t) andD(t) denote a time-varying connected region ofR3 and its boundary, respectively,vb{\displaystyle \mathbf {v} _{b}} is the Eulerian velocity of the boundary (seeLagrangian and Eulerian coordinates) anddΣ =ndS is the unit normal component of thesurfaceelement.

The general statement of the Leibniz integral rule requires concepts fromdifferential geometry, specificallydifferential forms,exterior derivatives,wedge products andinterior products. With those tools, the Leibniz integral rule inn dimensions is[4]ddtΩ(t)ω=Ω(t)iv(dxω)+Ω(t)ivω+Ω(t)ω˙,{\displaystyle {\frac {d}{dt}}\int _{\Omega (t)}\omega =\int _{\Omega (t)}i_{\mathbf {v} }(d_{x}\omega )+\int _{\partial \Omega (t)}i_{\mathbf {v} }\omega +\int _{\Omega (t)}{\dot {\omega }},}whereΩ(t) is a time-varying domain of integration,ω is ap-form,v=xt{\displaystyle \mathbf {v} ={\frac {\partial \mathbf {x} }{\partial t}}} is the vector field of the velocity,iv{\displaystyle i_{\mathbf {v} }} denotes theinterior product withv{\displaystyle \mathbf {v} },dxω is theexterior derivative ofω with respect to the space variables only andω˙{\displaystyle {\dot {\omega }}} is the time derivative ofω.

The above formula can be deduced directly from the fact that theLie derivative interacts nicely with integration of differential formsddtΩ(t)ω=Ω(t)LΨω,{\displaystyle {\frac {d}{dt}}\int _{\Omega (t)}\omega =\int _{\Omega (t)}{\mathcal {L}}_{\Psi }\omega ,}for the spacetime manifoldM=R×R3{\displaystyle M=\mathbb {R} \times \mathbb {R} ^{3}}, where the spacetime exterior derivative ofω{\displaystyle \omega } isdω=dtω˙+dxω{\displaystyle d\omega =dt\wedge {\dot {\omega }}+d_{x}\omega } and the surfaceΩ(t){\displaystyle \Omega (t)} has spacetime velocity fieldΨ=t+v{\displaystyle \Psi ={\frac {\partial }{\partial t}}+\mathbf {v} }.Sinceω{\displaystyle \omega } has only spatial components, the Lie derivative can be simplified usingCartan's magic formula, toLΨω=Lvω+Ltω=ivdω+divω+itdω=ivdxω+divω+ω˙{\displaystyle {\mathcal {L}}_{\Psi }\omega ={\mathcal {L}}_{\mathbf {v} }\omega +{\mathcal {L}}_{\frac {\partial }{\partial t}}\omega =i_{\mathbf {v} }d\omega +di_{\mathbf {v} }\omega +i_{\frac {\partial }{\partial t}}d\omega =i_{\mathbf {v} }d_{x}\omega +di_{\mathbf {v} }\omega +{\dot {\omega }}}which, after integrating overΩ(t){\displaystyle \Omega (t)} and usinggeneralized Stokes' theorem on the second term, reduces to the three desired terms.

Measure theory statement

[edit]

LetX{\displaystyle X} be an open subset ofR{\displaystyle \mathbf {R} }, andΩ{\displaystyle \Omega } be ameasure space. Supposef:X×ΩR{\displaystyle f\colon X\times \Omega \to \mathbf {R} } satisfies the following conditions:[5][6][2]

  1. f(x,ω){\displaystyle f(x,\omega )} is a Lebesgue-integrable function ofω{\displaystyle \omega } for eachxX{\displaystyle x\in X}.
  2. Foralmost allωΩ{\displaystyle \omega \in \Omega } , the partial derivativefx{\displaystyle f_{x}} exists for allxX{\displaystyle x\in X}.
  3. There is an integrable functionθ:ΩR{\displaystyle \theta \colon \Omega \to \mathbf {R} } such that|fx(x,ω)|θ(ω){\displaystyle |f_{x}(x,\omega )|\leq \theta (\omega )} for allxX{\displaystyle x\in X} and almost everyωΩ{\displaystyle \omega \in \Omega }.

Then, for allxX{\displaystyle x\in X},ddxΩf(x,ω)dω=Ωfx(x,ω)dω.{\displaystyle {\frac {d}{dx}}\int _{\Omega }f(x,\omega )\,d\omega =\int _{\Omega }f_{x}(x,\omega )\,d\omega .}

The proof relies on thedominated convergence theorem and themean value theorem (details below).

Proofs

[edit]

Proof of basic form

[edit]

We first prove the case of constant limits of integrationa andb.

We useFubini's theorem to change the order of integration. For everyx andh, such thath > 0 and bothx andx +h are within[x0,x1], we have:xx+habfx(x,t)dtdx=abxx+hfx(x,t)dxdt=ab(f(x+h,t)f(x,t))dt=abf(x+h,t)dtabf(x,t)dt{\displaystyle {\begin{aligned}\int _{x}^{x+h}\int _{a}^{b}f_{x}(x,t)\,dt\,dx&=\int _{a}^{b}\int _{x}^{x+h}f_{x}(x,t)\,dx\,dt\\[2ex]&=\int _{a}^{b}\left(f(x+h,t)-f(x,t)\right)\,dt\\[2ex]&=\int _{a}^{b}f(x+h,t)\,dt-\int _{a}^{b}f(x,t)\,dt\end{aligned}}}

Note that the integrals at hand are well defined sincefx(x,t){\displaystyle f_{x}(x,t)} is continuous at the closed rectangle[x0,x1]×[a,b]{\displaystyle [x_{0},x_{1}]\times [a,b]} and thus also uniformly continuous there; thus its integrals by eitherdt ordx are continuous in the other variable and also integrable by it (essentially this is because for uniformly continuous functions, one may pass the limit through the integration sign, as elaborated below).

Therefore:abf(x+h,t)dtabf(x,t)dth=1hxx+habfx(x,t)dtdx=F(x+h)F(x)h{\displaystyle {\begin{aligned}{\frac {\int _{a}^{b}f(x+h,t)\,dt-\int _{a}^{b}f(x,t)\,dt}{h}}&={\frac {1}{h}}\int _{x}^{x+h}\int _{a}^{b}f_{x}(x,t)\,dt\,dx\\[2ex]&={\frac {F(x+h)-F(x)}{h}}\end{aligned}}}

Where we have defined:F(u):=x0uabfx(x,t)dtdx{\displaystyle F(u):=\int _{x_{0}}^{u}\int _{a}^{b}f_{x}(x,t)\,dt\,dx}(we may replacex0 here by any other point betweenx0 andx)

F is differentiable with derivativeabfx(x,t)dt{\textstyle \int _{a}^{b}f_{x}(x,t)\,dt}, so we can take the limit whereh approaches zero. For the left hand side this limit is:ddxabf(x,t)dt{\displaystyle {\frac {d}{dx}}\int _{a}^{b}f(x,t)\,dt}

For the right hand side, we get:F(x)=abfx(x,t)dt{\displaystyle F'(x)=\int _{a}^{b}f_{x}(x,t)\,dt}And we thus prove the desired result:ddxabf(x,t)dt=abfx(x,t)dt{\displaystyle {\frac {d}{dx}}\int _{a}^{b}f(x,t)\,dt=\int _{a}^{b}f_{x}(x,t)\,dt}

Another proof using the bounded convergence theorem

[edit]

If the integrals at hand areLebesgue integrals, we may use thebounded convergence theorem (valid for these integrals, but not forRiemann integrals) in order to show that the limit can be passed through the integral sign.

Note that this proof is weaker in the sense that it only shows thatfx(x,t) is Lebesgue integrable, but not that it is Riemann integrable. In the former (stronger) proof, iff(x,t) is Riemann integrable, then so isfx(x,t) (and thus is obviously also Lebesgue integrable).

Let

u(x)=abf(x,t)dt.{\displaystyle u(x)=\int _{a}^{b}f(x,t)\,dt.}1

By the definition of the derivative,

u(x)=limh0u(x+h)u(x)h.{\displaystyle u'(x)=\lim _{h\to 0}{\frac {u(x+h)-u(x)}{h}}.}2

Substitute equation (1) into equation (2). The difference of two integrals equals the integral of the difference, and 1/h is a constant, sou(x)=limh0abf(x+h,t)dtabf(x,t)dth=limh0ab(f(x+h,t)f(x,t))dth=limh0abf(x+h,t)f(x,t)hdt.{\displaystyle {\begin{aligned}u'(x)&=\lim _{h\to 0}{\frac {\int _{a}^{b}f(x+h,t)\,dt-\int _{a}^{b}f(x,t)\,dt}{h}}\\&=\lim _{h\to 0}{\frac {\int _{a}^{b}\left(f(x+h,t)-f(x,t)\right)\,dt}{h}}\\&=\lim _{h\to 0}\int _{a}^{b}{\frac {f(x+h,t)-f(x,t)}{h}}\,dt.\end{aligned}}}

We now show that the limit can be passed through the integral sign.

We claim that the passage of the limit under the integral sign is valid by the bounded convergence theorem (a corollary of thedominated convergence theorem). For eachδ > 0, consider thedifference quotientfδ(x,t)=f(x+δ,t)f(x,t)δ.{\displaystyle f_{\delta }(x,t)={\frac {f(x+\delta ,t)-f(x,t)}{\delta }}.}Fort fixed, themean value theorem implies there existsz in the interval [x,x +δ] such thatfδ(x,t)=fx(z,t).{\displaystyle f_{\delta }(x,t)=f_{x}(z,t).}Continuity offx(x,t) and compactness of the domain together imply thatfx(x,t) is bounded. The above application of the mean value theorem therefore gives a uniform (independent oft{\displaystyle t}) bound onfδ(x,t){\displaystyle f_{\delta }(x,t)}. The difference quotients converge pointwise to the partial derivativefx by the assumption that the partial derivative exists.

The above argument shows that for every sequence {δn} → 0, the sequence{fδn(x,t)}{\displaystyle \{f_{\delta _{n}}(x,t)\}} is uniformly bounded and converges pointwise tofx. The bounded convergence theorem states that if a sequence of functions on a set of finite measure is uniformly bounded and converges pointwise, then passage of the limit under the integral is valid. In particular, the limit and integral may be exchanged for every sequence {δn} → 0. Therefore, the limit asδ → 0 may be passed through the integral sign.

If instead we only know that there is an integrable functionθ:ΩR{\displaystyle \theta \colon \Omega \to \mathbf {R} } such that|fx(x,ω)|θ(ω){\displaystyle |f_{x}(x,\omega )|\leq \theta (\omega )}, then|fδ(x,t)|=|fx(z,t)|θ(ω){\displaystyle |f_{\delta }(x,t)|=|f_{x}(z,t)|\leq \theta (\omega )} and the dominated convergence theorem allows us to move the limit inside of the integral.

Variable limits form

[edit]

For acontinuousreal valued functiong of onereal variable, and real valueddifferentiable functionsf1{\displaystyle f_{1}} andf2{\displaystyle f_{2}} of one real variable,ddx(f1(x)f2(x)g(t)dt)=g(f2(x))f2(x)g(f1(x))f1(x).{\displaystyle {\frac {d}{dx}}\left(\int _{f_{1}(x)}^{f_{2}(x)}g(t)\,dt\right)=g\left(f_{2}(x)\right){f_{2}'(x)}-g\left(f_{1}(x)\right){f_{1}'(x)}.}

This follows from thechain rule and theFirst Fundamental Theorem of Calculus. DefineG(x)=f1(x)f2(x)g(t)dt,{\displaystyle G(x)=\int _{f_{1}(x)}^{f_{2}(x)}g(t)\,dt,}andΓ(x)=0xg(t)dt.{\displaystyle \Gamma (x)=\int _{0}^{x}g(t)\,dt.}(The lower limit just has to be some number in the domain ofg{\displaystyle g})

Then,G(x){\displaystyle G(x)} can be written as acomposition:G(x)=(Γf2)(x)(Γf1)(x){\displaystyle G(x)=(\Gamma \circ f_{2})(x)-(\Gamma \circ f_{1})(x)}. TheChain Rule then implies thatG(x)=Γ(f2(x))f2(x)Γ(f1(x))f1(x).{\displaystyle G'(x)=\Gamma '\left(f_{2}(x)\right)f_{2}'(x)-\Gamma '\left(f_{1}(x)\right)f_{1}'(x).}By theFirst Fundamental Theorem of Calculus,Γ(x)=g(x){\displaystyle \Gamma '(x)=g(x)}. Therefore, substituting this result above, we get the desired equation:G(x)=g(f2(x))f2(x)g(f1(x))f1(x).{\displaystyle G'(x)=g\left(f_{2}(x)\right){f_{2}'(x)}-g\left(f_{1}(x)\right){f_{1}'(x)}.}

Note: This form can be particularly useful if the expression to be differentiated is of the form:f1(x)f2(x)h(x)g(t)dt{\displaystyle \int _{f_{1}(x)}^{f_{2}(x)}h(x)\,g(t)\,dt}Becauseh(x){\displaystyle h(x)} does not depend on the limits of integration, it may be moved out from under the integral sign, and the above form may be used with theProduct rule, i.e.,ddx(f1(x)f2(x)h(x)g(t)dt)=ddx(h(x)f1(x)f2(x)g(t)dt)=h(x)f1(x)f2(x)g(t)dt+h(x)ddx(f1(x)f2(x)g(t)dt){\displaystyle {\begin{aligned}{\frac {d}{dx}}\left(\int _{f_{1}(x)}^{f_{2}(x)}h(x)g(t)\,dt\right)&={\frac {d}{dx}}\left(h(x)\int _{f_{1}(x)}^{f_{2}(x)}g(t)\,dt\right)\\&=h'(x)\int _{f_{1}(x)}^{f_{2}(x)}g(t)\,dt+h(x){\frac {d}{dx}}\left(\int _{f_{1}(x)}^{f_{2}(x)}g(t)\,dt\right)\end{aligned}}}

General form with variable limits

[edit]

Setφ(α)=abf(x,α)dx,{\displaystyle \varphi (\alpha )=\int _{a}^{b}f(x,\alpha )\,dx,}wherea andb are functions ofα that exhibit increments Δa and Δb, respectively, whenα is increased by Δα. Then,Δφ=φ(α+Δα)φ(α)=a+Δab+Δbf(x,α+Δα)dxabf(x,α)dx=a+Δaaf(x,α+Δα)dx+abf(x,α+Δα)dx+bb+Δbf(x,α+Δα)dxabf(x,α)dx=aa+Δaf(x,α+Δα)dx+ab[f(x,α+Δα)f(x,α)]dx+bb+Δbf(x,α+Δα)dx.{\displaystyle {\begin{aligned}\Delta \varphi &=\varphi (\alpha +\Delta \alpha )-\varphi (\alpha )\\[4pt]&=\int _{a+\Delta a}^{b+\Delta b}f(x,\alpha +\Delta \alpha )\,dx-\int _{a}^{b}f(x,\alpha )\,dx\\[4pt]&=\int _{a+\Delta a}^{a}f(x,\alpha +\Delta \alpha )\,dx+\int _{a}^{b}f(x,\alpha +\Delta \alpha )\,dx+\int _{b}^{b+\Delta b}f(x,\alpha +\Delta \alpha )\,dx-\int _{a}^{b}f(x,\alpha )\,dx\\[4pt]&=-\int _{a}^{a+\Delta a}f(x,\alpha +\Delta \alpha )\,dx+\int _{a}^{b}[f(x,\alpha +\Delta \alpha )-f(x,\alpha )]\,dx+\int _{b}^{b+\Delta b}f(x,\alpha +\Delta \alpha )\,dx.\end{aligned}}}

A form of themean value theorem,abf(x)dx=(ba)f(ξ){\textstyle \int _{a}^{b}f(x)\,dx=(b-a)f(\xi )}, wherea <ξ <b, may be applied to the first and last integrals of the formula for Δφ above, resulting inΔφ=Δaf(ξ1,α+Δα)+ab[f(x,α+Δα)f(x,α)]dx+Δbf(ξ2,α+Δα).{\displaystyle \Delta \varphi =-\Delta af(\xi _{1},\alpha +\Delta \alpha )+\int _{a}^{b}[f(x,\alpha +\Delta \alpha )-f(x,\alpha )]\,dx+\Delta bf(\xi _{2},\alpha +\Delta \alpha ).}

Divide by Δα and let Δα → 0. Noticeξ1a andξ2b. We may pass the limit through the integral sign:limΔα0abf(x,α+Δα)f(x,α)Δαdx=abαf(x,α)dx,{\displaystyle \lim _{\Delta \alpha \to 0}\int _{a}^{b}{\frac {f(x,\alpha +\Delta \alpha )-f(x,\alpha )}{\Delta \alpha }}\,dx=\int _{a}^{b}{\frac {\partial }{\partial \alpha }}f(x,\alpha )\,dx,}again by the bounded convergence theorem. This yields the general form of the Leibniz integral rule,dφdα=abαf(x,α)dx+f(b,α)dbdαf(a,α)dadα.{\displaystyle {\frac {d\varphi }{d\alpha }}=\int _{a}^{b}{\frac {\partial }{\partial \alpha }}f(x,\alpha )\,dx+f(b,\alpha ){\frac {db}{d\alpha }}-f(a,\alpha ){\frac {da}{d\alpha }}.}

Alternative proof of the general form with variable limits, using the chain rule

[edit]

The general form of Leibniz's Integral Rule with variable limits can be derived as a consequence of thebasic form of Leibniz's Integral Rule, themultivariable chain rule, and thefirst fundamental theorem of calculus. Supposef{\displaystyle f} is defined in a rectangle in thext{\displaystyle x-t} plane, forx[x1,x2]{\displaystyle x\in [x_{1},x_{2}]} andt[t1,t2]{\displaystyle t\in [t_{1},t_{2}]}. Also, assumef{\displaystyle f} and the partial derivativefx{\textstyle {\frac {\partial f}{\partial x}}} are both continuous functions on this rectangle. Supposea,b{\displaystyle a,b} aredifferentiable real valued functions defined on[x1,x2]{\displaystyle [x_{1},x_{2}]}, with values in[t1,t2]{\displaystyle [t_{1},t_{2}]} (i.e. for everyx[x1,x2],a(x),b(x)[t1,t2]{\displaystyle x\in [x_{1},x_{2}],a(x),b(x)\in [t_{1},t_{2}]}). Now, setF(x,y)=t1yf(x,t)dt,for x[x1,x2] and y[t1,t2]{\displaystyle F(x,y)=\int _{t_{1}}^{y}f(x,t)\,dt,\qquad {\text{for}}~x\in [x_{1},x_{2}]~{\text{and}}~y\in [t_{1},t_{2}]}andG(x)=a(x)b(x)f(x,t)dt,for x[x1,x2]{\displaystyle G(x)=\int _{a(x)}^{b(x)}f(x,t)\,dt,\quad {\text{for}}~x\in [x_{1},x_{2}]}

Then, by properties ofdefinite Integrals, we can writeG(x)=t1b(x)f(x,t)dtt1a(x)f(x,t)dt=F(x,b(x))F(x,a(x)){\displaystyle G(x)=\int _{t_{1}}^{b(x)}f(x,t)\,dt-\int _{t_{1}}^{a(x)}f(x,t)\,dt=F(x,b(x))-F(x,a(x))}

Since the functionsF,a,b{\displaystyle F,a,b} are all differentiable (see the remark at the end of the proof), by themultivariable chain rule, it follows thatG{\displaystyle G} is differentiable, and its derivative is given by the formula:G(x)=(Fx(x,b(x))+Fy(x,b(x))b(x))(Fx(x,a(x))+Fy(x,a(x))a(x)){\displaystyle G'(x)=\left({\frac {\partial F}{\partial x}}(x,b(x))+{\frac {\partial F}{\partial y}}(x,b(x))b'(x)\right)-\left({\frac {\partial F}{\partial x}}(x,a(x))+{\frac {\partial F}{\partial y}}(x,a(x))a'(x)\right)}Now, note that for everyx[x1,x2]{\displaystyle x\in [x_{1},x_{2}]}, and for everyy[t1,t2]{\displaystyle y\in [t_{1},t_{2}]}, we have thatFx(x,y)=t1yfx(x,t)dt{\textstyle {\frac {\partial F}{\partial x}}(x,y)=\int _{t_{1}}^{y}{\frac {\partial f}{\partial x}}(x,t)\,dt}, because when taking the partial derivative with respect tox{\displaystyle x} ofF{\displaystyle F}, we are keepingy{\displaystyle y} fixed in the expressiont1yf(x,t)dt{\textstyle \int _{t_{1}}^{y}f(x,t)\,dt}; thus thebasic form of Leibniz's Integral Rule with constant limits of integration applies. Next, by thefirst fundamental theorem of calculus, we have thatFy(x,y)=f(x,y){\textstyle {\frac {\partial F}{\partial y}}(x,y)=f(x,y)}; because when taking the partial derivative with respect toy{\displaystyle y} ofF{\displaystyle F}, the first variablex{\displaystyle x} is fixed, so the fundamental theorem can indeed be applied.

Substituting these results into the equation forG(x){\displaystyle G'(x)} above gives:G(x)=(t1b(x)fx(x,t)dt+f(x,b(x))b(x))(t1a(x)fx(x,t)dt+f(x,a(x))a(x))=f(x,b(x))b(x)f(x,a(x))a(x)+a(x)b(x)fx(x,t)dt,{\displaystyle {\begin{aligned}G'(x)&=\left(\int _{t_{1}}^{b(x)}{\frac {\partial f}{\partial x}}(x,t)\,dt+f(x,b(x))b'(x)\right)-\left(\int _{t_{1}}^{a(x)}{\dfrac {\partial f}{\partial x}}(x,t)\,dt+f(x,a(x))a'(x)\right)\\[2pt]&=f(x,b(x))b'(x)-f(x,a(x))a'(x)+\int _{a(x)}^{b(x)}{\frac {\partial f}{\partial x}}(x,t)\,dt,\end{aligned}}}as desired.

There is a technical point in the proof above which is worth noting: applying the Chain Rule toG{\displaystyle G} requires thatF{\displaystyle F} already bedifferentiable. This is where we use our assumptions aboutf{\displaystyle f}. As mentioned above, the partial derivatives ofF{\displaystyle F} are given by the formulasFx(x,y)=t1yfx(x,t)dt{\textstyle {\frac {\partial F}{\partial x}}(x,y)=\int _{t_{1}}^{y}{\frac {\partial f}{\partial x}}(x,t)\,dt} andFy(x,y)=f(x,y){\textstyle {\frac {\partial F}{\partial y}}(x,y)=f(x,y)}. Sincefx{\textstyle {\dfrac {\partial f}{\partial x}}} is continuous, its integral is also a continuous function,[7] and sincef{\displaystyle f} is also continuous, these two results show that both the partial derivatives ofF{\displaystyle F} are continuous. Since continuity of partial derivatives implies differentiability of the function,[8]F{\displaystyle F} is indeed differentiable.

Three-dimensional, time-dependent form

[edit]

At timet the surface Σ inFigure 1 contains a set of points arranged about a centroidC(t){\displaystyle \mathbf {C} (t)}. The functionF(r,t){\displaystyle \mathbf {F} (\mathbf {r} ,t)} can be written asF(C(t)+rC(t),t)=F(C(t)+I,t),{\displaystyle \mathbf {F} (\mathbf {C} (t)+\mathbf {r} -\mathbf {C} (t),t)=\mathbf {F} (\mathbf {C} (t)+\mathbf {I} ,t),}withI{\displaystyle \mathbf {I} } independent of time. Variables are shifted to a new frame of reference attached to the moving surface, with origin atC(t){\displaystyle \mathbf {C} (t)}. For a rigidly translating surface, the limits of integration are then independent of time, so:ddt(Σ(t)dArF(r,t))=ΣdAIddtF(C(t)+I,t),{\displaystyle {\frac {d}{dt}}\left(\iint _{\Sigma (t)}d\mathbf {A} _{\mathbf {r} }\cdot \mathbf {F} (\mathbf {r} ,t)\right)=\iint _{\Sigma }d\mathbf {A} _{\mathbf {I} }\cdot {\frac {d}{dt}}\mathbf {F} (\mathbf {C} (t)+\mathbf {I} ,t),}where the limits of integration confining the integral to the region Σ no longer are time dependent so differentiation passes through the integration to act on the integrand only:ddtF(C(t)+I,t)=Ft(C(t)+I,t)+vF(C(t)+I,t)=Ft(r,t)+vF(r,t),{\displaystyle {\frac {d}{dt}}\mathbf {F} (\mathbf {C} (t)+\mathbf {I} ,t)=\mathbf {F} _{t}(\mathbf {C} (t)+\mathbf {I} ,t)+\mathbf {v\cdot \nabla F} (\mathbf {C} (t)+\mathbf {I} ,t)=\mathbf {F} _{t}(\mathbf {r} ,t)+\mathbf {v} \cdot \nabla \mathbf {F} (\mathbf {r} ,t),}with the velocity of motion of the surface defined byv=ddtC(t).{\displaystyle \mathbf {v} ={\frac {d}{dt}}\mathbf {C} (t).}

This equation expresses thematerial derivative of the field, that is, the derivative with respect to a coordinate system attached to the moving surface. Having found the derivative, variables can be switched back to the original frame of reference. We notice that (seearticle on curl)×(v×F)=(F+F)v(v+v)F,{\displaystyle \nabla \times \left(\mathbf {v} \times \mathbf {F} \right)=(\nabla \cdot \mathbf {F} +\mathbf {F} \cdot \nabla )\mathbf {v} -(\nabla \cdot \mathbf {v} +\mathbf {v} \cdot \nabla )\mathbf {F} ,}and thatStokes theorem equates the surface integral of the curl over Σ with a line integral over∂Σ:ddt(Σ(t)F(r,t)dA)=Σ(t)(Ft(r,t)+(F)v+(F)v(v)F)dAΣ(t)(v×F)ds.{\displaystyle {\frac {d}{dt}}\left(\iint _{\Sigma (t)}\mathbf {F} (\mathbf {r} ,t)\cdot d\mathbf {A} \right)=\iint _{\Sigma (t)}{\big (}\mathbf {F} _{t}(\mathbf {r} ,t)+\left(\mathbf {F\cdot \nabla } \right)\mathbf {v} +\left(\nabla \cdot \mathbf {F} \right)\mathbf {v} -(\nabla \cdot \mathbf {v} )\mathbf {F} {\big )}\cdot d\mathbf {A} -\oint _{\partial \Sigma (t)}\left(\mathbf {v} \times \mathbf {F} \right)\cdot d\mathbf {s} .}

The sign of the line integral is based on theright-hand rule for the choice of direction of line elementds. To establish this sign, for example, suppose the fieldF points in the positivez-direction, and the surface Σ is a portion of thexy-plane with perimeter ∂Σ. We adopt the normal to Σ to be in the positivez-direction. Positive traversal of ∂Σ is then counterclockwise (right-hand rule with thumb alongz-axis). Then the integral on the left-hand side determines apositive flux ofF through Σ. Suppose Σ translates in the positivex-direction at velocityv. An element of the boundary of Σ parallel to they-axis, sayds, sweeps out an areavt ×ds in timet. If we integrate around the boundary ∂Σ in a counterclockwise sense,vt ×ds points in the negativez-direction on the left side of ∂Σ (whereds points downward), and in the positivez-direction on the right side of ∂Σ (whereds points upward), which makes sense because Σ is moving to the right, adding area on the right and losing it on the left. On that basis, the flux ofF is increasing on the right of ∂Σ and decreasing on the left. However, thedot productv ×Fds = −F ×vds = −Fv ×ds. Consequently, the sign of the line integral is taken as negative.

Ifv is a constant,ddtΣ(t)F(r,t)dA=Σ(t)(Ft(r,t)+(F)v)dAΣ(t)(v×F)ds,{\displaystyle {\frac {d}{dt}}\iint _{\Sigma (t)}\mathbf {F} (\mathbf {r} ,t)\cdot d\mathbf {A} =\iint _{\Sigma (t)}{\big (}\mathbf {F} _{t}(\mathbf {r} ,t)+\left(\nabla \cdot \mathbf {F} \right)\mathbf {v} {\big )}\cdot d\mathbf {A} -\oint _{\partial \Sigma (t)}\left(\mathbf {v} \times \mathbf {F} \right)\cdot \,d\mathbf {s} ,}which is the quoted result. This proof does not consider the possibility of the surface deforming as it moves.

Alternative derivation

[edit]

Lemma. One has:b(abf(x)dx)=f(b),a(abf(x)dx)=f(a).{\displaystyle {\frac {\partial }{\partial b}}\left(\int _{a}^{b}f(x)\,dx\right)=f(b),\qquad {\frac {\partial }{\partial a}}\left(\int _{a}^{b}f(x)\,dx\right)=-f(a).}

Proof. From theproof of the fundamental theorem of calculus,

b(abf(x)dx)=limΔb01Δb(ab+Δbf(x)dxabf(x)dx)=limΔb01Δb(abf(x)dx+bb+Δbf(x)dxabf(x)dx)=limΔb01Δbbb+Δbf(x)dx=limΔb01Δb[f(b)Δb+O(Δb2)]=f(b),{\displaystyle {\begin{aligned}{\frac {\partial }{\partial b}}\left(\int _{a}^{b}f(x)\,dx\right)&=\lim _{\Delta b\to 0}{\frac {1}{\Delta b}}\left(\int _{a}^{b+\Delta b}f(x)\,dx-\int _{a}^{b}f(x)\,dx\right)\\[1ex]&=\lim _{\Delta b\to 0}{\frac {1}{\Delta b}}\left(\int _{a}^{b}f(x)\,dx+\int _{b}^{b+\Delta b}f(x)\,dx-\int _{a}^{b}f(x)\,dx\right)\\[1ex]&=\lim _{\Delta b\to 0}{\frac {1}{\Delta b}}\int _{b}^{b+\Delta b}f(x)\,dx\\[1ex]&=\lim _{\Delta b\to 0}{\frac {1}{\Delta b}}\left[f(b)\Delta b+O\left(\Delta b^{2}\right)\right]\\[1ex]&=f(b),\end{aligned}}}anda(abf(x)dx)=limΔa01Δa[a+Δabf(x)dxabf(x)dx]=limΔa01Δaa+Δaaf(x)dx=limΔa01Δa[f(a)Δa+O(Δa2)]=f(a).{\displaystyle {\begin{aligned}{\frac {\partial }{\partial a}}\left(\int _{a}^{b}f(x)\,dx\right)&=\lim _{\Delta a\to 0}{\frac {1}{\Delta a}}\left[\int _{a+\Delta a}^{b}f(x)\,dx-\int _{a}^{b}f(x)\,dx\right]\\[6pt]&=\lim _{\Delta a\to 0}{\frac {1}{\Delta a}}\int _{a+\Delta a}^{a}f(x)\,dx\\[6pt]&=\lim _{\Delta a\to 0}{\frac {1}{\Delta a}}\left[-f(a)\Delta a+O\left(\Delta a^{2}\right)\right]\\[6pt]&=-f(a).\end{aligned}}}

Supposea andb are constant, and thatf(x) involves a parameterα which is constant in the integration but may vary to form different integrals. Assume thatf(x,α) is a continuous function ofx andα in the compact set {(x,α) :α0αα1 andaxb}, and that the partial derivativefα(x,α) exists and is continuous. If one defines:φ(α)=abf(x,α)dx,{\displaystyle \varphi (\alpha )=\int _{a}^{b}f(x,\alpha )\,dx,}thenφ{\displaystyle \varphi } may be differentiated with respect toα by differentiating under the integral sign, i.e.,dφdα=abαf(x,α)dx.{\displaystyle {\frac {d\varphi }{d\alpha }}=\int _{a}^{b}{\frac {\partial }{\partial \alpha }}f(x,\alpha )\,dx.}

By theHeine–Cantor theorem it is uniformly continuous in that set. In other words, for anyε > 0 there exists Δα such that for all values ofx in [a,b],|f(x,α+Δα)f(x,α)|<ε.{\displaystyle |f(x,\alpha +\Delta \alpha )-f(x,\alpha )|<\varepsilon .}

On the other hand,Δφ=φ(α+Δα)φ(α)=abf(x,α+Δα)dxabf(x,α)dx=ab(f(x,α+Δα)f(x,α))dxε(ba).{\displaystyle {\begin{aligned}\Delta \varphi &=\varphi (\alpha +\Delta \alpha )-\varphi (\alpha )\\[6pt]&=\int _{a}^{b}f(x,\alpha +\Delta \alpha )\,dx-\int _{a}^{b}f(x,\alpha )\,dx\\[6pt]&=\int _{a}^{b}\left(f(x,\alpha +\Delta \alpha )-f(x,\alpha )\right)\,dx\\[6pt]&\leq \varepsilon (b-a).\end{aligned}}}

Henceφ(α) is a continuous function.

Similarly ifαf(x,α){\displaystyle {\frac {\partial }{\partial \alpha }}f(x,\alpha )} exists and is continuous, then for allε > 0 there exists Δα such that:x[a,b],|f(x,α+Δα)f(x,α)Δαfα|<ε.{\displaystyle \forall x\in [a,b],\quad \left|{\frac {f(x,\alpha +\Delta \alpha )-f(x,\alpha )}{\Delta \alpha }}-{\frac {\partial f}{\partial \alpha }}\right|<\varepsilon .}

Therefore,ΔφΔα=abf(x,α+Δα)f(x,α)Δαdx=abf(x,α)αdx+R,{\displaystyle {\frac {\Delta \varphi }{\Delta \alpha }}=\int _{a}^{b}{\frac {f(x,\alpha +\Delta \alpha )-f(x,\alpha )}{\Delta \alpha }}\,dx=\int _{a}^{b}{\frac {\partial f(x,\alpha )}{\partial \alpha }}\,dx+R,}where|R|<abεdx=ε(ba).{\displaystyle |R|<\int _{a}^{b}\varepsilon \,dx=\varepsilon (b-a).}

Now,ε → 0 as Δα → 0, solimΔα0ΔφΔα=dφdα=abαf(x,α)dx.{\displaystyle \lim _{{\Delta \alpha }\to 0}{\frac {\Delta \varphi }{\Delta \alpha }}={\frac {d\varphi }{d\alpha }}=\int _{a}^{b}{\frac {\partial }{\partial \alpha }}f(x,\alpha )\,dx.}

This is the formula we set out to prove.

Now, supposeabf(x,α)dx=φ(α),{\displaystyle \int _{a}^{b}f(x,\alpha )\,dx=\varphi (\alpha ),}wherea andb are functions ofα which take increments Δa and Δb, respectively, whenα is increased by Δα. Then,Δφ=φ(α+Δα)φ(α)=a+Δab+Δbf(x,α+Δα)dxabf(x,α)dx=a+Δaaf(x,α+Δα)dx+abf(x,α+Δα)dx+bb+Δbf(x,α+Δα)dxabf(x,α)dx=aa+Δaf(x,α+Δα)dx+ab[f(x,α+Δα)f(x,α)]dx+bb+Δbf(x,α+Δα)dx.{\displaystyle {\begin{aligned}\Delta \varphi &=\varphi (\alpha +\Delta \alpha )-\varphi (\alpha )\\[6pt]&=\int _{a+\Delta a}^{b+\Delta b}f(x,\alpha +\Delta \alpha )\,dx-\int _{a}^{b}f(x,\alpha )\,dx\\[6pt]&=\int _{a+\Delta a}^{a}f(x,\alpha +\Delta \alpha )\,dx+\int _{a}^{b}f(x,\alpha +\Delta \alpha )\,dx+\int _{b}^{b+\Delta b}f(x,\alpha +\Delta \alpha )\,dx-\int _{a}^{b}f(x,\alpha )\,dx\\[6pt]&=-\int _{a}^{a+\Delta a}f(x,\alpha +\Delta \alpha )\,dx+\int _{a}^{b}[f(x,\alpha +\Delta \alpha )-f(x,\alpha )]\,dx+\int _{b}^{b+\Delta b}f(x,\alpha +\Delta \alpha )\,dx.\end{aligned}}}

A form of themean value theorem,abf(x)dx=(ba)f(ξ),{\textstyle \int _{a}^{b}f(x)\,dx=(b-a)f(\xi ),} wherea <ξ <b, can be applied to the first and last integrals of the formula for Δφ above, resulting inΔφ=Δaf(ξ1,α+Δα)+ab[f(x,α+Δα)f(x,α)]dx+Δbf(ξ2,α+Δα).{\displaystyle \Delta \varphi =-\Delta a\,f(\xi _{1},\alpha +\Delta \alpha )+\int _{a}^{b}[f(x,\alpha +\Delta \alpha )-f(x,\alpha )]\,dx+\Delta b\,f(\xi _{2},\alpha +\Delta \alpha ).}

Dividing by Δα, letting Δα → 0, noticingξ1a andξ2b and using the above derivation fordφdα=abαf(x,α)dx{\displaystyle {\frac {d\varphi }{d\alpha }}=\int _{a}^{b}{\frac {\partial }{\partial \alpha }}f(x,\alpha )\,dx}yieldsdφdα=abαf(x,α)dx+f(b,α)bαf(a,α)aα.{\displaystyle {\frac {d\varphi }{d\alpha }}=\int _{a}^{b}{\frac {\partial }{\partial \alpha }}f(x,\alpha )\,dx+f(b,\alpha ){\frac {\partial b}{\partial \alpha }}-f(a,\alpha ){\frac {\partial a}{\partial \alpha }}.}

This is the general form of the Leibniz integral rule.

Examples

[edit]

Example 1: Fixed limits

[edit]

Consider the function

φ(α)=01αx2+α2dx.{\displaystyle \varphi (\alpha )=\int _{0}^{1}{\frac {\alpha }{x^{2}+\alpha ^{2}}}\,dx.}

The function under the integral sign is not continuous at the point(x,α)=(0,0){\displaystyle (x,\alpha )=(0,0)}, and the functionφ(α){\displaystyle \varphi (\alpha )} has a discontinuity atα=0{\displaystyle \alpha =0} becauseφ(α){\displaystyle \varphi (\alpha )} approaches±π/2{\displaystyle \pm \pi /2} asα0±{\displaystyle \alpha \to 0^{\pm }}.

If we differentiateφ(α){\displaystyle \varphi (\alpha )} with respect toα{\displaystyle \alpha } under the integral sign, we getddαφ(α)=01α(αx2+α2)dx=01x2α2(x2+α2)2dx=xx2+α2|01=11+α2,{\displaystyle {\frac {d}{d\alpha }}\varphi (\alpha )=\int _{0}^{1}{\frac {\partial }{\partial \alpha }}\left({\frac {\alpha }{x^{2}+\alpha ^{2}}}\right)\,dx=\int _{0}^{1}{\frac {x^{2}-\alpha ^{2}}{(x^{2}+\alpha ^{2})^{2}}}dx=\left.-{\frac {x}{x^{2}+\alpha ^{2}}}\right|_{0}^{1}=-{\frac {1}{1+\alpha ^{2}}},}forα0{\displaystyle \alpha \neq 0}. This may be integrated (with respect toα{\displaystyle \alpha }) to findφ(α)={0,α=0,arctan(α)+π2,α0.{\displaystyle \varphi (\alpha )={\begin{cases}0,&\alpha =0,\\-\arctan({\alpha })+{\frac {\pi }{2}},&\alpha \neq 0.\end{cases}}}

Example 2: Variable limits

[edit]

An example with variable limits:ddxsinxcosxcosht2dt=cosh(cos2x)ddx(cosx)cosh(sin2x)ddx(sinx)+sinxcosxx(cosht2)dt=cosh(cos2x)(sinx)cosh(sin2x)(cosx)+0=cosh(cos2x)sinxcosh(sin2x)cosx.{\displaystyle {\begin{aligned}{\frac {d}{dx}}\int _{\sin x}^{\cos x}\cosh t^{2}\,dt&=\cosh \left(\cos ^{2}x\right){\frac {d}{dx}}(\cos x)-\cosh \left(\sin ^{2}x\right){\frac {d}{dx}}(\sin x)+\int _{\sin x}^{\cos x}{\frac {\partial }{\partial x}}(\cosh t^{2})\,dt\\[6pt]&=\cosh(\cos ^{2}x)(-\sin x)-\cosh(\sin ^{2}x)(\cos x)+0\\[6pt]&=-\cosh(\cos ^{2}x)\sin x-\cosh(\sin ^{2}x)\cos x.\end{aligned}}}

Applications

[edit]

Evaluating definite integrals

[edit]

The formuladdx(a(x)b(x)f(x,t)dt)=f(x,b(x))ddxb(x)f(x,a(x))ddxa(x)+a(x)b(x)xf(x,t)dt{\displaystyle {\frac {d}{dx}}\left(\int _{a(x)}^{b(x)}f(x,t)\,dt\right)=f{\big (}x,b(x){\big )}\cdot {\frac {d}{dx}}b(x)-f{\big (}x,a(x){\big )}\cdot {\frac {d}{dx}}a(x)+\int _{a(x)}^{b(x)}{\frac {\partial }{\partial x}}f(x,t)\,dt}can be of use when evaluating certain definite integrals. When used in this context, the Leibniz integral rule for differentiating under the integral sign is also known as Feynman's trick/technique for integration.

Example 3

[edit]

Considerφ(α)=0πln(12αcos(x)+α2)dx,|α|1.{\displaystyle \varphi (\alpha )=\int _{0}^{\pi }\ln \left(1-2\alpha \cos(x)+\alpha ^{2}\right)\,dx,\qquad |\alpha |\neq 1.}

Now,ddαφ(α)=0π2cos(x)+2α12αcos(x)+α2dx=1α0π(11α212αcos(x)+α2)dx=πα2α{arctan(1+α1αtan(x2))}|0π.{\displaystyle {\begin{aligned}{\frac {d}{d\alpha }}\varphi (\alpha )&=\int _{0}^{\pi }{\frac {-2\cos(x)+2\alpha }{1-2\alpha \cos(x)+\alpha ^{2}}}dx\\[6pt]&={\frac {1}{\alpha }}\int _{0}^{\pi }\left(1-{\frac {1-\alpha ^{2}}{1-2\alpha \cos(x)+\alpha ^{2}}}\right)dx\\[6pt]&=\left.{\frac {\pi }{\alpha }}-{\frac {2}{\alpha }}\left\{\arctan \left({\frac {1+\alpha }{1-\alpha }}\tan \left({\frac {x}{2}}\right)\right)\right\}\right|_{0}^{\pi }.\end{aligned}}}

Asx{\displaystyle x} varies from0{\displaystyle 0} toπ{\displaystyle \pi }, we have{1+α1αtan(x2)0,|α|<1,1+α1αtan(x2)0,|α|>1.{\displaystyle {\begin{cases}{\frac {1+\alpha }{1-\alpha }}\tan \left({\frac {x}{2}}\right)\geq 0,&|\alpha |<1,\\{\frac {1+\alpha }{1-\alpha }}\tan \left({\frac {x}{2}}\right)\leq 0,&|\alpha |>1.\end{cases}}}

Hence,arctan(1+α1αtan(x2))|0π={π2,|α|<1,π2,|α|>1.{\displaystyle \left.\arctan \left({\frac {1+\alpha }{1-\alpha }}\tan \left({\frac {x}{2}}\right)\right)\right|_{0}^{\pi }={\begin{cases}{\frac {\pi }{2}},&|\alpha |<1,\\-{\frac {\pi }{2}},&|\alpha |>1.\end{cases}}}

Therefore,

ddαφ(α)={0,|α|<1,2πα,|α|>1.{\displaystyle {\frac {d}{d\alpha }}\varphi (\alpha )={\begin{cases}0,&|\alpha |<1,\\{\frac {2\pi }{\alpha }},&|\alpha |>1.\end{cases}}}

Integrating both sides with respect toα{\displaystyle \alpha }, we get:φ(α)={C1,|α|<1,2πln|α|+C2,|α|>1.{\displaystyle \varphi (\alpha )={\begin{cases}C_{1},&|\alpha |<1,\\2\pi \ln |\alpha |+C_{2},&|\alpha |>1.\end{cases}}}

C1=0{\displaystyle C_{1}=0} follows from evaluatingφ(0){\displaystyle \varphi (0)}:φ(0)=0πln(1)dx=0π0dx=0.{\displaystyle \varphi (0)=\int _{0}^{\pi }\ln(1)\,dx=\int _{0}^{\pi }0\,dx=0.}

To determineC2{\displaystyle C_{2}} in the same manner, we should need to substitute in a value ofα{\displaystyle \alpha } greater than 1 inφ(α){\displaystyle \varphi (\alpha )}. This is somewhat inconvenient. Instead, we substituteα=1β{\textstyle \alpha ={\frac {1}{\beta }}}, where|β|<1{\displaystyle |\beta |<1}. Then,φ(α)=0π(ln(12βcos(x)+β2)2ln|β|)dx=0πln(12βcos(x)+β2)dx0π2ln|β|dx=02πln|β|=2πln|α|.{\displaystyle {\begin{aligned}\varphi (\alpha )&=\int _{0}^{\pi }\left(\ln \left(1-2\beta \cos(x)+\beta ^{2}\right)-2\ln |\beta |\right)dx\\[6pt]&=\int _{0}^{\pi }\ln \left(1-2\beta \cos(x)+\beta ^{2}\right)\,dx-\int _{0}^{\pi }2\ln |\beta |dx\\[6pt]&=0-2\pi \ln |\beta |\\[6pt]&=2\pi \ln |\alpha |.\end{aligned}}}

Therefore,C2=0{\displaystyle C_{2}=0}

The definition ofφ(α){\displaystyle \varphi (\alpha )} is now complete:φ(α)={0,|α|<1,2πln|α|,|α|>1.{\displaystyle \varphi (\alpha )={\begin{cases}0,&|\alpha |<1,\\2\pi \ln |\alpha |,&|\alpha |>1.\end{cases}}}

The foregoing discussion, of course, does not apply whenα=±1{\displaystyle \alpha =\pm 1}, since the conditions for differentiability are not met.

Example 4

[edit]

I=0π/21(acos2x+bsin2x)2dx,a,b>0.{\displaystyle I=\int _{0}^{\pi /2}{\frac {1}{\left(a\cos ^{2}x+b\sin ^{2}x\right)^{2}}}\,dx,\qquad a,b>0.}

First we calculate:J=0π/21acos2x+bsin2xdx=0π/21cos2xa+bsin2xcos2xdx=0π/2sec2xa+btan2xdx=1b0π/21(ab)2+tan2xd(tanx)=1abarctan(batanx)|0π/2=π2ab.{\displaystyle {\begin{aligned}J&=\int _{0}^{\pi /2}{\frac {1}{a\cos ^{2}x+b\sin ^{2}x}}dx\\[6pt]&=\int _{0}^{\pi /2}{\frac {\frac {1}{\cos ^{2}x}}{a+b{\frac {\sin ^{2}x}{\cos ^{2}x}}}}dx\\[6pt]&=\int _{0}^{\pi /2}{\frac {\sec ^{2}x}{a+b\tan ^{2}x}}dx\\[6pt]&={\frac {1}{b}}\int _{0}^{\pi /2}{\frac {1}{\left({\sqrt {\frac {a}{b}}}\right)^{2}+\tan ^{2}x}}\,d(\tan x)\\[6pt]&=\left.{\frac {1}{\sqrt {ab}}}\arctan \left({\sqrt {\frac {b}{a}}}\tan x\right)\right|_{0}^{\pi /2}\\[6pt]&={\frac {\pi }{2{\sqrt {ab}}}}.\end{aligned}}}

The limits of integration being independent ofa{\displaystyle a}, we have:Ja=0π/2cos2x(acos2x+bsin2x)2dx{\displaystyle {\frac {\partial J}{\partial a}}=-\int _{0}^{\pi /2}{\frac {\cos ^{2}x}{\left(a\cos ^{2}x+b\sin ^{2}x\right)^{2}}}\,dx}

On the other hand:Ja=a(π2ab)=π4a3b.{\displaystyle {\frac {\partial J}{\partial a}}={\frac {\partial }{\partial a}}\left({\frac {\pi }{2{\sqrt {ab}}}}\right)=-{\frac {\pi }{4{\sqrt {a^{3}b}}}}.}

Equating these two relations then yields0π/2cos2x(acos2x+bsin2x)2dx=π4a3b.{\displaystyle \int _{0}^{\pi /2}{\frac {\cos ^{2}x}{\left(a\cos ^{2}x+b\sin ^{2}x\right)^{2}}}\,dx={\frac {\pi }{4{\sqrt {a^{3}b}}}}.}

In a similar fashion, pursuingJb{\displaystyle {\frac {\partial J}{\partial b}}} yields0π/2sin2x(acos2x+bsin2x)2dx=π4ab3.{\displaystyle \int _{0}^{\pi /2}{\frac {\sin ^{2}x}{\left(a\cos ^{2}x+b\sin ^{2}x\right)^{2}}}\,dx={\frac {\pi }{4{\sqrt {ab^{3}}}}}.}

Adding the two results then producesI=0π/21(acos2x+bsin2x)2dx=π4ab(1a+1b),{\displaystyle I=\int _{0}^{\pi /2}{\frac {1}{\left(a\cos ^{2}x+b\sin ^{2}x\right)^{2}}}\,dx={\frac {\pi }{4{\sqrt {ab}}}}\left({\frac {1}{a}}+{\frac {1}{b}}\right),}which computesI{\displaystyle I} as desired.

This derivation may be generalized. Note that if we defineIn=0π/21(acos2x+bsin2x)ndx,{\displaystyle I_{n}=\int _{0}^{\pi /2}{\frac {1}{\left(a\cos ^{2}x+b\sin ^{2}x\right)^{n}}}\,dx,}it can easily be shown that(1n)In=In1a+In1b{\displaystyle (1-n)I_{n}={\frac {\partial I_{n-1}}{\partial a}}+{\frac {\partial I_{n-1}}{\partial b}}}

GivenI1{\displaystyle I_{1}}, this integral reduction formula can be used to compute all of the values ofIn{\displaystyle I_{n}} forn>1{\displaystyle n>1}. Integrals likeI{\displaystyle I} andJ{\displaystyle J} may also be handled using theWeierstrass substitution.

Example 5

[edit]

Here, we consider the integralI(α)=0π/2ln(1+cosαcosx)cosxdx,0<α<π.{\displaystyle I(\alpha )=\int _{0}^{\pi /2}{\frac {\ln(1+\cos \alpha \cos x)}{\cos x}}\,dx,\qquad 0<\alpha <\pi .}

Differentiating under the integral with respect toα{\displaystyle \alpha }, we haveddαI(α)=0π/2α(ln(1+cosαcosx)cosx)dx=0π/2sinα1+cosαcosxdx=0π/2sinα(cos2x2+sin2x2)+cosα(cos2x2sin2x2)dx=sinα1cosα0π/21cos2x211+cosα1cosα+tan2x2dx=2sinα1cosα0π/212sec2x22cos2α22sin2α2+tan2x2dx=2(2sinα2cosα2)2sin2α20π/21cot2α2+tan2x2d(tanx2)=2cotα20π/21cot2α2+tan2x2d(tanx2)=2arctan(tanα2tanx2)|0π/2=α.{\displaystyle {\begin{aligned}{\frac {d}{d\alpha }}I(\alpha )&=\int _{0}^{\pi /2}{\frac {\partial }{\partial \alpha }}\left({\frac {\ln(1+\cos \alpha \cos x)}{\cos x}}\right)\,dx\\[6pt]&=-\int _{0}^{\pi /2}{\frac {\sin \alpha }{1+\cos \alpha \cos x}}\,dx\\&=-\int _{0}^{\pi /2}{\frac {\sin \alpha }{\left(\cos ^{2}{\frac {x}{2}}+\sin ^{2}{\frac {x}{2}}\right)+\cos \alpha \left(\cos ^{2}{\frac {x}{2}}-\sin ^{2}{\frac {x}{2}}\right)}}\,dx\\[6pt]&=-{\frac {\sin \alpha }{1-\cos \alpha }}\int _{0}^{\pi /2}{\frac {1}{\cos ^{2}{\frac {x}{2}}}}{\frac {1}{{\frac {1+\cos \alpha }{1-\cos \alpha }}+\tan ^{2}{\frac {x}{2}}}}\,dx\\[6pt]&=-{\frac {2\sin \alpha }{1-\cos \alpha }}\int _{0}^{\pi /2}{\frac {{\frac {1}{2}}\sec ^{2}{\frac {x}{2}}}{{\frac {2\cos ^{2}{\frac {\alpha }{2}}}{2\sin ^{2}{\frac {\alpha }{2}}}}+\tan ^{2}{\frac {x}{2}}}}\,dx\\[6pt]&=-{\frac {2\left(2\sin {\frac {\alpha }{2}}\cos {\frac {\alpha }{2}}\right)}{2\sin ^{2}{\frac {\alpha }{2}}}}\int _{0}^{\pi /2}{\frac {1}{\cot ^{2}{\frac {\alpha }{2}}+\tan ^{2}{\frac {x}{2}}}}\,d\left(\tan {\frac {x}{2}}\right)\\[6pt]&=-2\cot {\frac {\alpha }{2}}\int _{0}^{\pi /2}{\frac {1}{\cot ^{2}{\frac {\alpha }{2}}+\tan ^{2}{\frac {x}{2}}}}\,d\left(\tan {\frac {x}{2}}\right)\\[6pt]&=-2\arctan \left(\tan {\frac {\alpha }{2}}\tan {\frac {x}{2}}\right){\bigg |}_{0}^{\pi /2}\\[6pt]&=-\alpha .\end{aligned}}}

Therefore:I(α)=Cα22.{\displaystyle I(\alpha )=C-{\frac {\alpha ^{2}}{2}}.}

ButI(π2)=0{\textstyle I{\left({\frac {\pi }{2}}\right)}=0} by definition soC=π28{\textstyle C={\frac {\pi ^{2}}{8}}} andI(α)=π28α22.{\displaystyle I(\alpha )={\frac {\pi ^{2}}{8}}-{\frac {\alpha ^{2}}{2}}.}

Example 6

[edit]

Here, we consider the integral02πecosθcos(sinθ)dθ.{\displaystyle \int _{0}^{2\pi }e^{\cos \theta }\cos(\sin \theta )\,d\theta .}

We introduce a new variableφ and rewrite the integral asf(φ)=02πeφcosθcos(φsinθ)dθ.{\displaystyle f(\varphi )=\int _{0}^{2\pi }e^{\varphi \cos \theta }\cos(\varphi \sin \theta )\,d\theta .}

Whenφ = 1 this equals the original integral. However, this more general integral may be differentiated with respect toφ{\displaystyle \varphi }:dfdφ=02πφ[eφcosθcos(φsinθ)]dθ=02πeφcosθ[cosθcos(φsinθ)sinθsin(φsinθ)]dθ.{\displaystyle {\frac {df}{d\varphi }}=\int _{0}^{2\pi }{\frac {\partial }{\partial \varphi }}\left[e^{\varphi \cos \theta }\cos(\varphi \sin \theta )\right]d\theta =\int _{0}^{2\pi }e^{\varphi \cos \theta }\left[\cos \theta \cos(\varphi \sin \theta )-\sin \theta \sin(\varphi \sin \theta )\right]d\theta .}

Now, fixφ, and consider the vector field onR2{\displaystyle \mathbb {R} ^{2}} defined byF(x,y)=(F1(x,y),F2(x,y)):=(eφxsin(φy),eφxcos(φy)){\displaystyle \mathbf {F} (x,y)=(F_{1}(x,y),F_{2}(x,y)):=(e^{\varphi x}\sin(\varphi y),e^{\varphi x}\cos(\varphi y))}. Further, choose thepositive oriented parameterization of theunit circleS1{\displaystyle S^{1}} given byr:[0,2π)R2{\displaystyle \mathbf {r} \colon [0,2\pi )\to \mathbb {R} ^{2}},r(θ):=(cosθ,sinθ){\displaystyle \mathbf {r} (\theta ):=(\cos \theta ,\sin \theta )}, so thatr(t)=(sinθ,cosθ){\displaystyle \mathbf {r} '(t)=(-\sin \theta ,\cos \theta )}. Then the final integral above is precisely02πeφcosθ[cosθcos(φsinθ)sinθsin(φsinθ)]dθ=02π[eφcosθsin(φsinθ)eφcosθcos(φsinθ)][sinθcosθ]dθ=02πF(r(θ))r(θ)dθ=S1F(r)dr=S1F1dx+F2dy,{\displaystyle {\begin{aligned}&\int _{0}^{2\pi }e^{\varphi \cos \theta }\left[\cos \theta \cos(\varphi \sin \theta )-\sin \theta \sin(\varphi \sin \theta )\right]d\theta \\[6pt]={}&\int _{0}^{2\pi }{\begin{bmatrix}e^{\varphi \cos \theta }\sin(\varphi \sin \theta )\\e^{\varphi \cos \theta }\cos(\varphi \sin \theta )\end{bmatrix}}\cdot {\begin{bmatrix}-\sin \theta \\{\hphantom {-}}\cos \theta \end{bmatrix}}\,d\theta \\[6pt]={}&\int _{0}^{2\pi }\mathbf {F} (\mathbf {r} (\theta ))\cdot \mathbf {r} '(\theta )\,d\theta \\[6pt]={}&\oint _{S^{1}}\mathbf {F} (\mathbf {r} )\cdot d\mathbf {r} =\oint _{S^{1}}F_{1}\,dx+F_{2}\,dy,\end{aligned}}}the line integral ofF{\displaystyle \mathbf {F} } overS1{\displaystyle S^{1}}. ByGreen's Theorem, this equals the double integralDF2xF1ydA,{\displaystyle \iint _{D}{\frac {\partial F_{2}}{\partial x}}-{\frac {\partial F_{1}}{\partial y}}\,dA,}whereD{\displaystyle D} is the closedunit disc. Its integrand is identically 0, sodf/dφ{\displaystyle df/d\varphi } is likewise identically zero. This implies thatf(φ) is constant. The constant may be determined by evaluatingf{\displaystyle f} atφ=0{\displaystyle \varphi =0}:f(0)=02π1dθ=2π.{\displaystyle f(0)=\int _{0}^{2\pi }1\,d\theta =2\pi .}

Therefore, the original integral also equals2π{\displaystyle 2\pi }.

Other problems to solve

[edit]

There are innumerable other integrals that can be solved using the technique of differentiation under the integral sign. For example, in each of the following cases, the original integral may be replaced by a similar integral having a new parameterα{\displaystyle \alpha }:0sinxxdx0eαxsinxxdx,0π/2xtanxdx0π/2tan1(αtanx)tanxdx,0ln(1+x2)1+x2dx0ln(1+α2x2)1+x2dx01x1lnxdx01xα1lnxdx.{\displaystyle {\begin{aligned}\int _{0}^{\infty }{\frac {\sin x}{x}}\,dx&\to \int _{0}^{\infty }e^{-\alpha x}{\frac {\sin x}{x}}dx,\\[6pt]\int _{0}^{\pi /2}{\frac {x}{\tan x}}\,dx&\to \int _{0}^{\pi /2}{\frac {\tan ^{-1}(\alpha \tan x)}{\tan x}}dx,\\[6pt]\int _{0}^{\infty }{\frac {\ln(1+x^{2})}{1+x^{2}}}\,dx&\to \int _{0}^{\infty }{\frac {\ln(1+\alpha ^{2}x^{2})}{1+x^{2}}}dx\\[6pt]\int _{0}^{1}{\frac {x-1}{\ln x}}\,dx&\to \int _{0}^{1}{\frac {x^{\alpha }-1}{\ln x}}dx.\end{aligned}}}

The first integral, theDirichlet integral, is absolutely convergent for positiveα but only conditionally convergent whenα=0{\displaystyle \alpha =0}. Therefore, differentiation under the integral sign is easy to justify whenα>0{\displaystyle \alpha >0}, but proving that the resulting formula remains valid whenα=0{\displaystyle \alpha =0} requires some careful work.

Infinite series

[edit]

The measure-theoretic version of differentiation under the integral sign also applies to summation (finite or infinite) by interpreting summation ascounting measure. An example of an application is the fact thatpower series are differentiable in their radius of convergence.[citation needed]

Euler-Lagrange equations

[edit]

The Leibniz integral rule is used in the derivation of theEuler-Lagrange equation invariational calculus.

In popular culture

[edit]

Differentiation under the integral sign is mentioned in the latephysicistRichard Feynman's best-selling memoirSurely You're Joking, Mr. Feynman! in the chapter "A Different Box of Tools". He describes learning it, while inhigh school, from an old text,Advanced Calculus (1926), byFrederick S. Woods (who was a professor of mathematics in theMassachusetts Institute of Technology). The technique was not often taught when Feynman later received his formal education incalculus, but using this technique, Feynman was able to solve otherwise difficult integration problems upon his arrival at graduate school atPrinceton University:

One thing I never did learn wascontour integration. I had learned to do integrals by various methods shown in a book that my high school physics teacher Mr. Bader had given me. One day he told me to stay after class. "Feynman," he said, "you talk too much and you make too much noise. I know why. You're bored. So I'm going to give you a book. You go up there in the back, in the corner, and study this book, and when you know everything that's in this book, you can talk again." So every physics class, I paid no attention to what was going on with Pascal's Law, or whatever they were doing. I was up in the back with this book:"Advanced Calculus", by Woods. Bader knew I had studied"Calculus for the Practical Man" a little bit, so he gave me the real works—it was for a junior or senior course in college. It hadFourier series,Bessel functions,determinants,elliptic functions—all kinds of wonderful stuff that I didn't know anything about. That book also showed how to differentiate parameters under the integral sign—it's a certain operation. It turns out that's not taught very much in the universities; they don't emphasize it. But I caught on how to use that method, and I used that one damn tool again and again. So because I was self-taught using that book, I had peculiar methods of doing integrals. The result was, when guys at MIT orPrinceton had trouble doing a certain integral, it was because they couldn't do it with the standard methods they had learned in school. If it was contour integration, they would have found it; if it was a simple series expansion, they would have found it. Then I come along and try differentiating under the integral sign, and often it worked. So I got a great reputation for doing integrals, only because my box of tools was different from everybody else's, and they had tried all their tools on it before giving the problem to me.

See also

[edit]

References

[edit]
  1. ^Protter, Murray H.; Morrey, Charles B. Jr. (1985)."Differentiation under the Integral Sign".Intermediate Calculus (Second ed.). New York: Springer. pp. 421–426.doi:10.1007/978-1-4612-1086-3.ISBN 978-0-387-96058-6.
  2. ^abTalvila, Erik (June 2001)."Necessary and Sufficient Conditions for Differentiating under the Integral Sign".American Mathematical Monthly.108 (6):544–548.arXiv:math/0101012.doi:10.2307/2695709.JSTOR 2695709. Retrieved16 April 2022.
  3. ^Abraham, Max; Becker, Richard (1950).Classical Theory of Electricity and Magnetism (2nd ed.). London: Blackie & Sons. pp. 39–40.
  4. ^abFlanders, Harly (June–July 1973)."Differentiation under the integral sign"(PDF).American Mathematical Monthly.80 (6):615–627.doi:10.2307/2319163.JSTOR 2319163.
  5. ^Folland, Gerald (1999).Real Analysis: Modern Techniques and their Applications (2nd ed.). New York: John Wiley & Sons. p. 56.ISBN 978-0-471-31716-6.
  6. ^Cheng, Steve (6 September 2010). Differentiation under the integral sign with weak derivatives (Report). CiteSeerX.CiteSeerX 10.1.1.525.2529.
  7. ^Spivak, Michael (1994).Calculus (3 ed.). Houston, Texas: Publish or Perish, Inc. pp. 267–268.ISBN 978-0-914098-89-8.
  8. ^Spivak, Michael (1965).Calculus on Manifolds. Addison-Wesley Publishing Company. p. 31.ISBN 978-0-8053-9021-6.

Further reading

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Leibniz_integral_rule&oldid=1289748919"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp