Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hypercomplex manifold

From Wikipedia, the free encyclopedia
Manifold equipped with a quaternionic structure

Indifferential geometry, ahypercomplex manifold is amanifold with thetangent bundleequipped with anaction bythe algebra of quaternionsin such a way that the quaternionsI,J,K{\displaystyle I,J,K}define integrablealmost complex structures.

If the almost complex structures are instead not assumed to be integrable, the manifold is called quaternionic, or almost hypercomplex.[1]

Examples

[edit]

Everyhyperkähler manifold is also hypercomplex.The converse is not true. TheHopf surface

(H0)/Z{\displaystyle {\bigg (}{\mathbb {H} }\backslash 0{\bigg )}/{\mathbb {Z} }}

(withZ{\displaystyle {\mathbb {Z} }} actingas a multiplication by a quaternionq{\displaystyle q},|q|>1{\displaystyle |q|>1}) ishypercomplex, but notKähler,hence nothyperkähler either.To see that the Hopf surface is not Kähler,notice that it is diffeomorphic to a productS1×S3,{\displaystyle S^{1}\times S^{3},} hence its odd cohomologygroup is odd-dimensional. ByHodge decomposition,odd cohomology of a compactKähler manifoldare always even-dimensional. In fact Hidekiyo Wakakuwa proved[2] that on a compacthyperkähler manifold b2p+10 mod 4{\displaystyle \ b_{2p+1}\equiv 0\ mod\ 4}.Misha Verbitsky has shown that any compacthypercomplex manifold admitting a Kähler structure is also hyperkähler.[3]

In 1988, left-invariant hypercomplex structures on some compactLie groupswere constructed by the physicists Philippe Spindel, Alexander Sevrin, Walter Troost, and Antoine Van Proeyen. In 1992,Dominic Joyce rediscovered this construction, and gave a complete classification of left-invariant hypercomplex structures on compact Lie groups. Here is the complete list.

T4,SU(2l+1),T1×SU(2l),Tl×SO(2l+1),{\displaystyle T^{4},SU(2l+1),T^{1}\times SU(2l),T^{l}\times SO(2l+1),}
T2l×SO(4l),Tl×Sp(l),T2×E6,{\displaystyle T^{2l}\times SO(4l),T^{l}\times Sp(l),T^{2}\times E_{6},}
T7×E7,T8×E8,T4×F4,T2×G2{\displaystyle T^{7}\times E^{7},T^{8}\times E^{8},T^{4}\times F_{4},T^{2}\times G_{2}}

whereTi{\displaystyle T^{i}} denotes ani{\displaystyle i}-dimensional compact torus.

It is remarkable that any compact Lie group becomeshypercomplex after it is multiplied by a sufficientlybig torus.

Basic properties

[edit]

Hypercomplex manifolds as such were studied by Charles Boyer in 1988. He also proved that in real dimension 4, the only compact hypercomplexmanifolds are the complex torusT4{\displaystyle T^{4}}, theHopf surface and theK3 surface.

Much earlier (in 1955) Morio Obata studiedaffine connection associated withalmost hypercomplex structures (under the former terminology ofCharles Ehresmann[4] ofalmost quaternionic structures). His construction leads to whatEdmond Bonan called theObata connection[5][6] which istorsion free, if and only if, "two" of the almost complex structuresI,J,K{\displaystyle I,J,K} are integrable and in this case the manifold is hypercomplex.

Twistor spaces

[edit]

There is a 2-dimensional sphere of quaternionsLH{\displaystyle L\in {\mathbb {H} }} satisfyingL2=1{\displaystyle L^{2}=-1}.Each of these quaternions gives a complexstructure on a hypercomplex manifoldM. Thisdefines an almost complex structure on the manifoldM×S2{\displaystyle M\times S^{2}}, which is fibered overCP1=S2{\displaystyle {\mathbb {C} }P^{1}=S^{2}} with fibers identified with(M,L){\displaystyle (M,L)}. This complex structure is integrable, as followsfrom Obata's theorem (this was first explicitly proved byDmitry Kaledin[7]). This complex manifoldis called thetwistor space ofM{\displaystyle M}.IfM isH{\displaystyle {\mathbb {H} }}, then its twistor spaceis isomorphic toCP3CP1{\displaystyle {\mathbb {C} }P^{3}\backslash {\mathbb {C} }P^{1}}.

See also

[edit]

References

[edit]
  1. ^Manev, Mancho; Sekigawa, Kouei (2005). "Some Four-Dimensional Almost Hypercomplex Pseudo-Hermitian Manifolds". In S. Dimiev and K. Sekigawa (ed.).Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics. Vol. 2005. Hackensack, NJ: World Sci. Publ. pp. 174–186.arXiv:0804.2814.doi:10.1142/9789812701763_0016.ISBN 978-981-256-390-3.
  2. ^Wakakuwa, Hidekiyo (1958), "On Riemannian manifolds with homogeneous holonomy group Sp(n)",Tôhoku Mathematical Journal,10 (3):274–303,doi:10.2748/tmj/1178244665.
  3. ^Verbitsky, Misha (2005), "Hypercomplex structures on Kaehler manifolds",GAFA,15 (6):1275–1283,arXiv:math/0406390,doi:10.1007/s00039-005-0537-4
  4. ^Ehresmann, Charles (1947), "Sur la théorie des espaces fibrés",Coll. Top. Alg., Paris.
  5. ^Bonan, Edmond (1964), "Tenseur de structure d'une variété presque quaternionienne",C. R. Acad. Sci. Paris,259:45–48
  6. ^Bonan, Edmond (1967),"Sur les G-structures de type quaternionien"(PDF),Cahiers de Topologie et Géométrie Différentielle Catégoriques,9 (4):389–463.
  7. ^Kaledin, Dmitry (1996). "Integrability of the twistor space for a hypercomplex manifold".arXiv:alg-geom/9612016.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hypercomplex_manifold&oldid=1199306716"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp