Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Histogram

From Wikipedia, the free encyclopedia
Graphical representation of the distribution of numerical data
For the histogram used in digital image processing, seeImage histogram andColor histogram.

Ahistogram is a visual representation of thedistribution of quantitative data. To construct a histogram, the first step is to"bin" (or "bucket") the range of values— divide the entire range of values into a series of intervals—and then count how many values fall into each interval. The bins are usually specified as consecutive, non-overlappingintervals of a variable. The bins (intervals) are adjacent and are typically (but not required to be) of equal size.[1]

Histograms give a rough sense of the density of the underlying distribution of the data, and often fordensity estimation: estimating theprobability density function of the underlying variable. The total area of a histogram used for probability density is always normalized to 1. If the length of the intervals on thex-axis are all 1, then a histogram is identical to arelative frequency plot.

Histograms are sometimes confused withbar charts. In a histogram, each bin is for a different range of values, so altogether the histogram illustrates the distribution of values. But in a bar chart, each bar is for a different category of observations (e.g., each bar might be for a different population), so altogether the bar chart can be used to compare different categories. Some authors recommend that bar charts always have gaps between the bars to clarify that they are not histograms.[2][3]

Etymology

[edit]

The term "histogram" was first introduced byKarl Pearson, the founder of mathematicalstatistics, in lectures delivered in1892 atUniversity College London. Pearson's term is sometimes incorrectly said to combine the Greek rootγραμμα (gramma) = "figure" or "drawing" with the rootἱστορία (historia) = "inquiry" or "history". Alternatively the rootἱστίον (histion) is also proposed, meaning "web" or "tissue" (as inhistology, the study of biological tissue). Both of theseetymologies are incorrect, and in fact Pearson, who knew Ancient Greek well, derived the term from a different ifhomophonous Greek root,ἱστός = "something set upright", "mast", referring to the vertical bars in the graph. Pearson's new term was embedded in a series of other analogousneologisms, such as "stigmogram" and "radiogram".[4]

Pearson himself noted in 1895 that although the term "histogram" was new, the type of graph it designates was "a common form of graphical representation".[5]In fact the technique of using a bar graph to represent statistical measurements was devised by the Scottisheconomist,William Playfair, in hisCommercial and political atlas (1786).[4]

Examples

[edit]

This is the data for the histogram to the right, using 500 items:

Bin/IntervalCount/Frequency
−3.5 to −2.519
−2.5 to −1.5132
−1.5 to −0.51109
−0.5 to 0.49180
0.5 to 1.49132
1.5 to 2.4934
2.5 to 3.494

The words used to describe the patterns in a histogram are: "symmetric", "skewed left" or "right", "unimodal", "bimodal" or "multimodal".

It is a good idea to plot the data using several different bin widths to learn more about it. Here is an example on tips given in a restaurant.

  • Tips using a $1 bin width, skewed right, unimodal
    Tips using a $1 bin width, skewed right, unimodal
  • Tips using a 10c bin width, still skewed right, multimodal with modes at $ and 50c amounts, indicates rounding, also some outliers
    Tips using a 10c bin width, still skewed right, multimodal with modes at $ and 50c amounts, indicates rounding, also some outliers

TheU.S. Census Bureau found that there were 124 million people who work outside of their homes.[6] Using their data on the time occupied by travel to work, the table below shows the absolute number of people who responded with travel times "at least 30 but less than 35 minutes" is higher than the numbers for the categories above and below it. This is likely due to people rounding their reported journey time.[citation needed] The problem of reporting values as somewhat arbitrarilyrounded numbers is a common phenomenon when collecting data from people.[citation needed]

Histogram of travel time (to work), US 2000 census. Area under the curve equals the total number of cases. This diagram uses Q/width from the table.
Data by absolute numbers
IntervalWidthQuantityQuantity/width
054180836
55136872737
105186183723
155196343926
205179813596
25571901438
305163693273
3553212642
4054122824
45159200613
60306461215
9060343557

This histogram shows the number of cases perunit interval as the height of each block, so that the area of each block is equal to the number of people in the survey who fall into its category. The area under thecurve represents the total number of cases (124 million). This type of histogram shows absolute numbers, with Q in thousands.

Histogram of travel time (to work), US 2000 census. Area under the curve equals 1. This diagram uses Q/total/width (crowding) from the table. The height of a block represents crowding which is defined as - percentage per horizontal unit.
Data by proportion
IntervalWidthQuantity (Q)Q/total/width
0541800.0067
55136870.0221
105186180.0300
155196340.0316
205179810.0290
25571900.0116
305163690.0264
35532120.0052
40541220.0066
451592000.0049
603064610.0017
906034350.0005

This histogram differs from the first only in thevertical scale. The area of each block is the fraction of the total that each category represents, and the total area of all the bars is equal to 1 (the fraction meaning "all"). The curve displayed is a simpledensity estimate. This version shows proportions, and is also known as a unit area histogram.

In other words, a histogram represents a frequency distribution by means of rectangles whose widths represent class intervals and whose areas are proportional to the corresponding frequencies: the height of each is the average frequency density for the interval. The intervals are placed together in order to show that the data represented by the histogram, while exclusive, is also contiguous. (E.g., in a histogram it is possible to have two connecting intervals of 10.5–20.5 and 20.5–33.5, but not two connecting intervals of 10.5–20.5 and 22.5–32.5. Empty intervals are represented as empty and not skipped.)[7]

Mathematical definitions

[edit]
An ordinary and a cumulative histogram of the same data. The data shown is a random sample of 10,000 points from a normal distribution with a mean of 0 and a standard deviation of 1.

The data used to construct a histogram are generated via a functionmi that counts the number of observations that fall into each of the disjoint categories (known asbins). Thus, if we letn be the total number of observations andk be the total number of bins, the histogram datami meet the following conditions:

n=i=1kmi.{\displaystyle n=\sum _{i=1}^{k}{m_{i}}.}

A histogram can be thought of as a simplistickernel density estimation, which uses akernel to smooth frequencies over the bins. This yields asmoother probability density function, which will in general more accurately reflect distribution of the underlying variable. The density estimate could be plotted as an alternative to the histogram, and is usually drawn as a curve rather than a set of boxes. Histograms are nevertheless preferred in applications, when their statistical properties need to be modeled. The correlated variation of a kernel density estimate is very difficult to describe mathematically, while it is simple for a histogram where each bin varies independently.

An alternative to kernel density estimation is the average shifted histogram,[8]which is fast to compute and gives a smooth curve estimate of the density without using kernels.

Cumulative histogram

[edit]

A cumulative histogram: a mapping that counts the cumulative number of observations in all of the bins up to the specified bin. That is, the cumulative histogramMi of a histogrammj can be defined as:

Mi=j=1imj.{\displaystyle M_{i}=\sum _{j=1}^{i}{m_{j}}.}

Number of bins and width

[edit]

There is no "best" number of bins, and different bin sizes can reveal different features of the data. Grouping data is at least as old asGraunt's work in the 17th century, but no systematic guidelines were given[9] untilSturges's work in 1926.[10]

Using wider bins where the density of the underlying data points is low reduces noise due to sampling randomness; using narrower bins where the density is high (so the signal drowns the noise) gives greater precision to the density estimation. Thus varying the bin-width within a histogram can be beneficial. Nonetheless, equal-width bins are widely used.

Some theoreticians have attempted to determine an optimal number of bins, but these methods generally make strong assumptions about the shape of the distribution. Depending on the actual data distribution and the goals of the analysis, different bin widths may be appropriate, so experimentation is usually needed to determine an appropriate width. There are, however, various useful guidelines and rules of thumb.[11]

The number of binsk can be assigned directly or can be calculated from a suggested bin width h as:

Histogram data represented with different bin widths
k=maxxminxh.{\displaystyle k=\left\lceil {\frac {\max x-\min x}{h}}\right\rceil .}

The braces indicate theceiling function.

Square-root choice

[edit]
k=n{\displaystyle k=\lceil {\sqrt {n}}\rceil \,}

which takes the square root of the number of data points in the sample and rounds to the nextinteger. This rule is suggested by a number of elementary statistics textbooks[12] and widely implemented in many software packages.[13]

Sturges's formula

[edit]

Sturges's rule[10] is derived from abinomial distribution and implicitly assumes an approximately normal distribution.

k=log2n+1,{\displaystyle k=\lceil \log _{2}n\rceil +1,\,}

Sturges's formula implicitly bases bin sizes on the range of the data, and can perform poorly ifn < 30, because the number of bins will be small—less than seven—and unlikely to show trends in the data well. On the other extreme, Sturges's formula may overestimate bin width for very large datasets, resulting in oversmoothed histograms.[14] It may also perform poorly if the data are not normally distributed.

When compared to Scott's rule and the Terrell-Scott rule, two other widely accepted formulas for histogram bins, the output of Sturges's formula is closest whenn ≈ 100.[14]

Rice rule

[edit]
k=2n3{\displaystyle k=\lceil 2{\sqrt[{3}]{n}}\rceil }

TheRice rule[15] is presented as a simple alternative to Sturges's rule.

Doane's formula

[edit]

Doane's formula[16] is a modification of Sturges's formula which attempts to improve its performance with non-normal data.

k=1+log2(n)+log2(1+|g1|σg1){\displaystyle k=1+\log _{2}(n)+\log _{2}\left(1+{\frac {|g_{1}|}{\sigma _{g_{1}}}}\right)}

whereg1{\displaystyle g_{1}} is the estimated 3rd-moment-skewness of the distribution and

σg1=6(n2)(n+1)(n+3){\displaystyle \sigma _{g_{1}}={\sqrt {\frac {6(n-2)}{(n+1)(n+3)}}}}

Scott's normal reference rule

[edit]

Bin widthh{\displaystyle h} is given by

h=3.49σ^n3,{\displaystyle h={\frac {3.49{\hat {\sigma }}}{\sqrt[{3}]{n}}},}

whereσ^{\displaystyle {\hat {\sigma }}} is the samplestandard deviation.Scott's normal reference rule[17] is optimal for random samples of normally distributed data, in the sense that it minimizes the integrated mean squared error of the density estimate.[9] This is the default rule used in Microsoft Excel.[18]

Terrell–Scott rule

[edit]
k=2n3{\displaystyle k={\sqrt[{3}]{2n}}}

TheTerrell–Scott rule[14][19] is not a normal reference rule. It gives the minimum number of bins required for an asymptotically optimal histogram, where optimality is measured by the integrated mean squared error. The bound is derived by finding the 'smoothest' possible density, which turns out to be34(1x2){\displaystyle {\frac {3}{4}}(1-x^{2})}. Any other density will require more bins, hence the above estimate is also referred to as the 'oversmoothed' rule. The similarity of the formulas and the fact that Terrell and Scott were at Rice University when the proposed it suggests that this is also the origin of the Rice rule.

Freedman–Diaconis rule

[edit]

TheFreedman–Diaconis rule gives bin widthh{\displaystyle h} as:[20][9]

h=2IQR(x)n3,{\displaystyle h=2{\frac {\operatorname {IQR} (x)}{\sqrt[{3}]{n}}},}

which is based on theinterquartile range, denoted by IQR. It replaces 3.5σ of Scott's rule with 2 IQR, which is less sensitive than the standard deviation to outliers in data.

Minimizing cross-validation estimated squared error

[edit]

This approach of minimizing integrated mean squared error from Scott's rule can be generalized beyond normal distributions, by using leave-one out cross validation:[21][22]

argminhJ^(h)=argminh(2(n1)hn+1n2(n1)hkNk2){\displaystyle {\underset {h}{\operatorname {arg\,min} }}{\hat {J}}(h)={\underset {h}{\operatorname {arg\,min} }}\left({\frac {2}{(n-1)h}}-{\frac {n+1}{n^{2}(n-1)h}}\sum _{k}N_{k}^{2}\right)}

Here,Nk{\displaystyle N_{k}} is the number of datapoints in thekth bin, and choosing the value ofh that minimizesJ will minimize integrated mean squared error.

Shimazaki and Shinomoto's choice

[edit]

The choice is based on minimization of an estimatedL2risk function[23]

argminh2m¯vh2{\displaystyle {\underset {h}{\operatorname {arg\,min} }}{\frac {2{\bar {m}}-v}{h^{2}}}}

wherem¯{\displaystyle \textstyle {\bar {m}}} andv{\displaystyle \textstyle v} are mean and biased variance of a histogram with bin-widthh{\displaystyle \textstyle h},m¯=1ki=1kmi{\displaystyle \textstyle {\bar {m}}={\frac {1}{k}}\sum _{i=1}^{k}m_{i}} andv=1ki=1k(mim¯)2{\displaystyle \textstyle v={\frac {1}{k}}\sum _{i=1}^{k}(m_{i}-{\bar {m}})^{2}}.

Variable bin widths

[edit]

Rather than choosing evenly spaced bins, for some applications it is preferable to vary the bin width. This avoids bins with low counts. A common case is to chooseequiprobable bins, where the number of samples in each bin is expected to be approximately equal. The bins may be chosen according to some known distribution or may be chosen based on the data so that each bin hasn/k{\displaystyle \approx n/k} samples. When plotting the histogram, thefrequency density is used for the dependent axis. While all bins have approximately equal area, the heights of the histogram approximate the density distribution.

For equiprobable bins, the following rule for the number of bins is suggested:[24]

k=2n2/5{\displaystyle k=2n^{2/5}}

This choice of bins is motivated by maximizing the power of aPearson chi-squared test testing whether the bins do contain equal numbers of samples. More specifically, for a given confidence intervalα{\displaystyle \alpha } it is recommended to choose between 1/2 and 1 times the following equation:[25]

k=4(2n2Φ1(α))15{\displaystyle k=4\left({\frac {2n^{2}}{\Phi ^{-1}(\alpha )}}\right)^{\frac {1}{5}}}

WhereΦ1{\displaystyle \Phi ^{-1}} is theprobit function. Following this rule forα=0.05{\displaystyle \alpha =0.05} would give between1.88n2/5{\displaystyle 1.88n^{2/5}} and3.77n2/5{\displaystyle 3.77n^{2/5}}; the coefficient of 2 is chosen as an easy-to-remember value from this broad optimum.

Remark

[edit]

A good reason why the number of bins should be proportional ton3{\displaystyle {\sqrt[{3}]{n}}} is the following: suppose that the data are obtained asn{\displaystyle n} independent realizations of a bounded probability distribution with smooth density. Then the histogram remains equally "rugged" asn{\displaystyle n} tends to infinity. Ifs{\displaystyle s} is the "width" of the distribution (e. g., the standard deviation or the inter-quartile range), then the number of units in a bin (the frequency) is of ordernh/s{\displaystyle nh/s} and therelative standard error is of orders/(nh){\displaystyle {\sqrt {s/(nh)}}}. Compared to the next bin, the relative change of the frequency is of orderh/s{\displaystyle h/s} provided that the derivative of the density is non-zero. These two are of the same order ifh{\displaystyle h} is of orders/n3{\displaystyle s/{\sqrt[{3}]{n}}}, so thatk{\displaystyle k} is of ordern3{\displaystyle {\sqrt[{3}]{n}}}. This simple cubic root choice can also be applied to bins with non-constant widths.[citation needed]

Histogram and density function for aGumbel distribution[26]

Applications

[edit]

See also

[edit]
Wikimedia Commons has media related toHistograms.

References

[edit]
  1. ^Howitt, D.; Cramer, D. (2008).Introduction to Statistics in Psychology (Fourth ed.). Prentice Hall.ISBN 978-0-13-205161-3.
  2. ^Naomi, Robbins."A Histogram is NOT a Bar Chart".Forbes. Retrieved31 July 2018.
  3. ^M. Eileen Magnello (December 2006)."Karl Pearson and the Origins of Modern Statistics: An Elastician becomes a Statistician".The New Zealand Journal for the History and Philosophy of Science and Technology. 1 volume.OCLC 682200824.
  4. ^abDaniel Riaño Rufilanchas (2017),"On the origin of Karl Pearson’s term 'histogram'",Estadística Española vol. 59, no. 192, p. 29-35.
  5. ^Pearson, K. (1895)."Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material".Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.186:343–414.Bibcode:1895RSPTA.186..343P.doi:10.1098/rsta.1895.0010.
  6. ^US 2000 census.
  7. ^Dean, S., & Illowsky, B. (2009, February 19). Descriptive Statistics: Histogram. Retrieved from the Connexions Web site:http://cnx.org/content/m16298/1.11/
  8. ^David W. Scott (December 2009)."Averaged shifted histogram".Wiley Interdisciplinary Reviews: Computational Statistics.2 (2):160–164.doi:10.1002/wics.54.S2CID 122986682.
  9. ^abcScott, David W. (1992).Multivariate Density Estimation: Theory, Practice, and Visualization. New York: John Wiley.
  10. ^abSturges, H. A. (1926). "The choice of a class interval".Journal of the American Statistical Association.21 (153):65–66.doi:10.1080/01621459.1926.10502161.JSTOR 2965501.
  11. ^e.g. § 5.6 "Density Estimation", W. N. Venables and B. D. Ripley,Modern Applied Statistics with S (2002), Springer, 4th edition.ISBN 0-387-95457-0.
  12. ^Lohaka, H.O. (2007)."Making a grouped-data frequency table: development and examination of the iteration algorithm". Doctoral dissertation, Ohio University. p. 87.
  13. ^"MathWorks: Histogram".
  14. ^abcScott, David W. (2009). "Sturges' rule".WIREs Computational Statistics.1 (3):303–306.doi:10.1002/wics.35.S2CID 197483064.
  15. ^Online Statistics Education: A Multimedia Course of Study (http://onlinestatbook.com/). Project Leader: David M. Lane, Rice University (chapter 2 "Graphing Distributions", section "Histograms")
  16. ^Doane DP (1976) Aesthetic frequency classification. American Statistician, 30: 181–183
  17. ^Scott, David W. (1979). "On optimal and data-based histograms".Biometrika.66 (3):605–610.doi:10.1093/biomet/66.3.605.
  18. ^"Excel:Create a histogram".
  19. ^Terrell, G.R. and Scott, D.W., 1985. Oversmoothed nonparametric density estimates. Journal of the American Statistical Association, 80(389), pp.209-214.
  20. ^Freedman, David; Diaconis, P. (1981)."On the histogram as a density estimator:L2 theory"(PDF).Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete.57 (4):453–476.CiteSeerX 10.1.1.650.2473.doi:10.1007/BF01025868.S2CID 14437088.
  21. ^Wasserman, Larry (2004).All of Statistics. New York: Springer. p. 310.ISBN 978-1-4419-2322-6.
  22. ^Stone, Charles J. (1984)."An asymptotically optimal histogram selection rule"(PDF).Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer.
  23. ^Shimazaki, H.; Shinomoto, S. (2007). "A method for selecting the bin size of a time histogram".Neural Computation.19 (6):1503–1527.CiteSeerX 10.1.1.304.6404.doi:10.1162/neco.2007.19.6.1503.PMID 17444758.S2CID 7781236.
  24. ^Jack Prins; Don McCormack; Di Michelson; Karen Horrell."Chi-square goodness-of-fit test".NIST/SEMATECH e-Handbook of Statistical Methods. NIST/SEMATECH. p. 7.2.1.1. Retrieved29 March 2019.
  25. ^Moore, David (1986). "3". In D'Agostino, Ralph; Stephens, Michael (eds.).Goodness-of-Fit Techniques. New York, NY, US: Marcel Dekker Inc. p. 70.ISBN 0-8247-7487-6.
  26. ^A calculator for probability distributions and density functions
  27. ^An illustration of histograms and probability density functions

Further reading

[edit]
  • Lancaster, H.O.An Introduction to Medical Statistics. John Wiley and Sons. 1974.ISBN 0-471-51250-8

External links

[edit]
Wikimedia Commons has media related toHistogram.
Look uphistogram in Wiktionary, the free dictionary.
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Histogram&oldid=1282090850"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp