Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Harmonic measure

From Wikipedia, the free encyclopedia

Inmathematics, especiallypotential theory,harmonic measure is a concept related to the theory ofharmonic functions that arises from the solution of the classicalDirichlet problem.

Harmonic measure is the exit distribution of Brownian motion

Inprobability theory, the harmonic measure of a subset of the boundary of a bounded domain inEuclidean spaceRn{\displaystyle R^{n}},n2{\displaystyle n\geq 2} is the probability that aBrownian motion started inside a domain hits that subset of the boundary. More generally, harmonic measure of anItō diffusionX describes the distribution ofX as it hits the boundary ofD. In thecomplex plane, harmonic measure can be used to estimate themodulus of ananalytic function inside a domainD given bounds on the modulus on theboundary of the domain; a special case of this principle isHadamard's three-circle theorem. On simply connected planar domains, there is a close connection between harmonic measure and the theory ofconformal maps.

The termharmonic measure was introduced byRolf Nevanlinna in 1928 for planar domains,[1][2] although Nevanlinna notes the idea appeared implicitly in earlier work by Johansson, F. Riesz, M. Riesz, Carleman, Ostrowski and Julia (original order cited). The connection between harmonic measure and Brownian motion was first identified by Kakutani ten years later in 1944.[3]

Definition

[edit]

LetD be abounded,open domain inn-dimensionalEuclidean spaceRn,n ≥ 2, and let ∂D denote the boundary ofD. Anycontinuous functionf : ∂D → R determines a uniqueharmonic functionHf that solves theDirichlet problem

{ΔHf(x)=0,xD;Hf(x)=f(x),xD.{\displaystyle {\begin{cases}-\Delta H_{f}(x)=0,&x\in D;\\H_{f}(x)=f(x),&x\in \partial D.\end{cases}}}

If a pointx ∈ D is fixed, by theRiesz–Markov–Kakutani representation theorem and themaximum principleHf(x) determines aprobability measureω(xD) on ∂D by

Hf(x)=Df(y)dω(x,D)(y).{\displaystyle H_{f}(x)=\int _{\partial D}f(y)\,\mathrm {d} \omega (x,D)(y).}

The measureω(xD) is called theharmonic measure (of the domainD with pole atx).

Properties

[edit]
  • For any Borel subsetE of ∂D, the harmonic measureω(xD)(E) is equal to the value atx of the solution to the Dirichlet problem with boundary data equal to theindicator function ofE.
  • For fixedD andE ⊆ ∂D,ω(xD)(E) is a harmonic function ofx ∈ D and
0ω(x,D)(E)1;{\displaystyle 0\leq \omega (x,D)(E)\leq 1;}
1ω(x,D)(E)=ω(x,D)(DE);{\displaystyle 1-\omega (x,D)(E)=\omega (x,D)(\partial D\setminus E);}
Hence, for eachx andD,ω(xD) is aprobability measure on ∂D.

Since explicit formulas for harmonic measure are not typically available, we are interested in determining conditions which guarantee a set has harmonic measure zero.

Examples

[edit]

The harmonic measure of a diffusion

[edit]

Consider anRn-valued Itō diffusionX starting at some pointx in the interior of a domainD, with lawPx. Suppose that one wishes to know the distribution of the points at whichX exitsD. For example, canonical Brownian motionB on thereal line starting at 0 exits theinterval (−1, +1) at −1 with probability1/2 and at +1 with probability1/2, soBτ(−1, +1) isuniformly distributed on the set {−1, +1}.

In general, ifG iscompactly embedded withinRn, then theharmonic measure (orhitting distribution) ofX on the boundary ∂G ofG is the measureμGx defined by

μGx(F)=Px[XτGF]{\displaystyle \mu _{G}^{x}(F)=\mathbf {P} ^{x}{\big [}X_{\tau _{G}}\in F{\big ]}}

forx ∈ G andF ⊆ ∂G.

Returning to the earlier example of Brownian motion, one can show that ifB is a Brownian motion inRn starting atx ∈ Rn andD ⊂ Rn is anopen ball centred onx, then the harmonic measure ofB on ∂D isinvariant under allrotations ofD aboutx and coincides with the normalizedsurface measure on ∂D

General references

[edit]
  • Garnett, John B.; Marshall, Donald E. (2005).Harmonic Measure. Cambridge: Cambridge University Press.ISBN 978-0-521-47018-6.
  • Capogna, Luca; Kenig, Carlos E.;Lanzani, Loredana (2005).Harmonic Measure: Geometric and Analytic Points of View. University Lecture Series. Vol. ULECT/35. American Mathematical Society. p. 155.ISBN 978-0-8218-2728-4.

References

[edit]
  1. ^R. Nevanlinna (1970), "Analytic Functions", Springer-Verlag, Berlin, Heidelberg, cf. Introduction p. 3
  2. ^R. Nevanlinna (1934), "Das harmonische Mass von Punktmengen und seine Anwendung in der Funktionentheorie", Comptes rendus du huitème congrès des mathématiciens scandinaves, Stockholm, pp. 116–133.
  3. ^Kakutani, S. (1944)."On Brownian motion inn-space".Proc. Imp. Acad. Tokyo.20 (9):648–652.doi:10.3792/pia/1195572742.
  4. ^F. and M. Riesz (1916), "Über die Randwerte einer analytischen Funktion", Quatrième Congrès des Mathématiciens Scandinaves, Stockholm, pp. 27–44.
  5. ^Makarov, N. G. (1985). "On the Distortion of Boundary Sets Under Conformal Maps".Proc. London Math. Soc. 3.52 (2):369–384.doi:10.1112/plms/s3-51.2.369.
  6. ^Dahlberg, Björn E. J. (1977). "Estimates of harmonic measure".Arch. Rat. Mech. Anal.65 (3):275–288.Bibcode:1977ArRMA..65..275D.doi:10.1007/BF00280445.S2CID 120614580.
  • P. Jones and T. Wolff, Hausdorff dimension of Harmonic Measure in the plane, Acta. Math. 161 (1988) 131-144 (MR962097)(90j:31001)
  • C. Kenig and T. Toro, Free Boundary regularity for Harmonic Measores and Poisson Kernels, Ann. of Math. 150 (1999)369-454MR 172669992001d:31004)
  • C. Kenig, D. Preissand, T. Toro, Boundary Structure and Size in terms of Interior and Exterior Harmonic Measures in Higher Dimensions, Jour. of Amer. Math. Soc. vol 22 July 2009, no3,771-796
  • S. G. Krantz, The Theory and Practice of Conformal Geometry, Dover Publ. Mineola New York (2016) esp. Ch 6 classical case

External links

[edit]
Basic concepts
Sets
Types ofmeasures
Particular measures
Maps
Main results
Other results
ForLebesgue measure
Applications & related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Harmonic_measure&oldid=1230018933"
Categories:
Hidden category:

[8]ページ先頭

©2009-2025 Movatter.jp