Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Diazonaphthoquinone

From Wikipedia, the free encyclopedia
Diazonaphthoquinone
Names
Preferred IUPAC name
2-Diazonaphthalen-1(2H)-one
Other names
1,2-Naphthoquinone diazide
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/C10H6N2O/c11-12-9-6-5-7-3-1-2-4-8(7)10(9)13/h1-6H ☒N
    Key: URQUNWYOBNUYJQ-UHFFFAOYSA-N ☒N
  • InChI=1/C10H6N2O/c11-12-9-6-5-7-3-1-2-4-8(7)10(9)13/h1-6H
    Key: URQUNWYOBNUYJQ-UHFFFAOYAU
  • O=C(C(C=C2)=[N]=[N])C1=C2C=CC=C1
Properties
C10H6N2O
Molar mass170.171 g·mol−1
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Diazonaphthoquinone (DNQ) is adiazo derivative ofnaphthoquinone. Upon exposure to light, DNQ converts to a derivative that is susceptible to etching. In this way, DNQ has become an important reagent in photoresist technology in the semiconductor industry.[1]

Diazonaphthoquinone sulfonic acid esters are components of commonphotoresist materials. Such photoresists are used in the manufacture of semiconductors.[2][3][4] In this application DNQs are mixed withNovolac resin, a type ofphenolicpolymer. The DNQ functions as a dissolution inhibitor. During the masking/patterning process, portions of the photoresist film are exposed to light while others remain unexposed. In the unexposed regions of the resist film, the DNQ acts as a dissolution inhibitor and the resist remains insoluble in the aqueous base developer. In the exposed regions, the DNQ forms aketene, which, in turn, reacts with ambient water to form a base soluble indene carboxylic acid. The exposed regions of the photoresist film become soluble in aqueous base; thus allowing the formation of a relief image during development.

Chemical reactions

[edit]

Upon photolysis, DNQ undergoes aWolff rearrangement to form a ketene. The ketene adds water to formindene-carboxylic acid.[5]

References

[edit]
  1. ^Dammel, Ralph (1993).Diazonaphthoquinone-based Resists. Int. Soc. Optical Engineering.ISBN 9780819410191.
  2. ^Hinsberg, W. D.; Wallraff, G. M. (2005). "Lithographic Resists".Kirk-Othmer Encyclopedia of Chemical Technology. New York: John Wiley.doi:10.1002/0471238961.1209200808091419.a01.pub2.ISBN 9780471238966.
  3. ^Integrated Laboratory Systems (January 2006).Chemical Information Review Document for Diazonaphthoquinone Derivatives Used in Photoresists(PDF) (Report). National Toxicology Program.
  4. ^Henderson, Clifford L."Integrated Circuits: A Brief History". Georgia Tech School of Chemical & Biomolecular Engineering.
  5. ^N. C. de Lucas; J. C. Netto-Ferreira; J. Andraos; J. C. Scaiano (2001). "Nucleophilicity toward Ketenes: Rate Constants for Addition of Amines to Aryl Ketenes in Acetonitrile Solution".J. Org. Chem.66 (5):5016–5021.doi:10.1021/jo005752q.PMID 11463250.S2CID 12123114.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Diazonaphthoquinone&oldid=1289830972"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp