Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of cobalt

From Wikipedia, the free encyclopedia
(Redirected fromCobalt-56)

Isotopes ofcobalt (27Co)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
56Cosynth77.236 dβ+56Fe
57Cosynth271.811 dε57Fe
58Cosynth70.844 dβ+58Fe
59Co100%stable
60Cotrace5.2714 yβ100%60Ni
Standard atomic weightAr°(Co)

Naturally occurringcobalt, Co, consists of a single stableisotope,59Co (thus, cobalt is amononuclidic element). Twenty-eightradioisotopes have been characterized; the most stable are60Co with ahalf-life of 5.2714 years,57Co (271.811 days),56Co (77.236 days), and58Co (70.844 days). All other isotopes have half-lives of less than 18 hours and most of these have half-lives of less than 1 second. This element also has 19meta states, of which the most stable is58m1Co with a half-life of 8.853 h.

The isotopes of cobalt range inatomic weight from50Co to78Co. The maindecay mode for isotopes with atomic mass less than that of the stable isotope,59Co, iselectron capture and the main mode of decay for those of greater than 59 atomic mass units isbeta decay. The maindecay products before59Co areiron isotopes and the main products after arenickel isotopes.

Radioisotopes can be produced by variousnuclear reactions. For example,57Co is produced bycyclotron irradiation of iron. The main reaction is the (d,n) reaction56Fe +2H → n +57Co.[4]

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Isotopic
abundance
Excitation energy[n 4]
50Co272349.98112(14)38.8(2) msβ+, p (70.5%)49Mn(6+)
β+ (29.5%)50Fe
β+, 2p?48Cr
51Co272450.970647(52)68.8(19) msβ+ (96.2%)51Fe7/2−
β+, p (<3.8%)50Mn
52Co272551.9631302(57)111.7(21) msβ+52Fe6+
β+, p?51Mn
52mCo376(9) keV102(5) msβ+52Fe2+
IT?52Co
β+, p?51Mn
53Co272652.9542033(19)244.6(28) msβ+53Fe7/2−#
53mCo3174.3(9) keV250(10) msβ+? (~98.5%)53Fe(19/2−)
p (~1.5%)52Fe
54Co272753.94845908(38)193.27(6) msβ+54Fe0+
54mCo197.57(10) keV1.48(2) minβ+54Fe7+
55Co272854.94199642(43)17.53(3) hβ+55Fe7/2−
56Co272955.93983803(51)77.236(26) dβ+56Fe4+
57Co273056.93628982(55)271.811(32) dEC57Fe7/2−
58Co273157.9357513(12)70.844(20) dEC (85.21%)58Fe2+
β+ (14.79%)58Fe
58m1Co24.95(6) keV8.853(23) hIT58Co5+
EC (0.00120%)58Fe
58m2Co53.15(7) keV10.5(3) μsIT58Co4+
59Co273258.93319352(43)Stable7/2−1.0000
60Co273359.93381554(43)5.2714(6) yβ60Ni5+
60mCo58.59(1) keV10.467(6) minIT (99.75%)60Co2+
β (0.25%)60Ni
61Co273460.93247603(90)1.649(5) hβ61Ni7/2−
62Co273561.934058(20)1.54(10) minβ62Ni(2)+
62mCo22(5) keV13.86(9) minβ (>99.5%)62Ni(5)+
IT (<0.5%)62Co
63Co273662.933600(20)26.9(4) sβ63Ni7/2−
64Co273763.935810(21)300(30) msβ64Ni1+
64mCo107(20) keV300# msβ?64Ni5+#
IT?64Co
65Co273864.9364621(22)1.16(3) sβ65Ni(7/2)−
66Co273965.939443(15)194(17) msβ66Ni(1+)
β,n?65Ni
66m1Co175.1(3) keV824(22) nsIT66Co(3+)
66m2Co642(5) keV>100 μsIT66Co(8−)
67Co274066.9406096(69)329(28) msβ67Ni(7/2−)
β, n?66Ni
67mCo491.55(11) keV496(33) msIT (>80%)67Co(1/2−)
β67Ni
68Co274167.9445594(41)200(20) msβ68Ni(7−)
β, n?67Ni
68m1Co[n 8]150(150)# keV1.6(3) sβ68Ni(2−)
β, n (>2.6%)67Ni
68m2Co195(150)# keV101(10) nsIT68Co(1)
69Co274268.945909(92)180(20) msβ69Ni(7/2−)
β, n?68Ni
69mCo[n 8]170(90) keV750(250) msβ69Ni1/2−#
70Co274369.950053(12)508(7) msβ70Ni(1+)
β, n?69Ni
β, 2n?68Ni
70mCo[n 8]200(200)# keV112(7) msβ70Ni(7−)
IT?70Co
β, n?69Ni
β, 2n?68Ni
71Co274470.95237(50)80(3) msβ (97%)71Ni(7/2−)
β, n (3%)70Ni
72Co274571.95674(32)#51.5(3) msβ (<96%)72Ni(6−,7−)
β, n (>4%)71Ni
β, 2n?70Ni
72mCo[n 8]200(200)# keV47.8(5) msβ72Ni(0+,1+)
73Co274672.95924(32)#42.0(8) msβ (94%)73Ni(7/2−)
β, n (6%)72Ni
β, 2n?71Ni
74Co274773.96399(43)#31.3(13) msβ (82%)74Ni7−#
β, n (18%)73Ni
β, 2n?72Ni
75Co274874.96719(43)#26.5(12) msβ (>84%)75Ni7/2−#
β, n (<16%)74Ni
β, 2n?73Ni
76Co274975.97245(54)#23(6) msβ76Ni(8−)
β, n?75Ni
β, 2n?74Ni
76m1Co[n 8]100(100)# keV16(4) msβ76Ni(1−)
76m2Co740(100)# keV2.99(27) μsIT76Co(3+)
77Co275076.97648(64)#15(6) msβ77Ni7/2−#
β, n?76Ni
β, 2n?75Ni
β, 3n?74Ni
78Co275177.983 55(75)#11# ms
[>410 ns]
β?78Ni
This table header & footer:
  1. ^mCo – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^abcdeOrder of ground state and isomer is uncertain.

Stellar nucleosynthesis of cobalt-56

[edit]

One of the terminal nuclear reactions in stars prior tosupernova produces56Ni. Following its production,56Ni decays to56Co, and then56Co subsequently decays to56Fe. These decay reactions power the luminosity displayed inlight decay curves. Both the light decay andradioactive decay curves are expected to be exponential. Therefore, the light decay curve should give an indication of the nuclear reactions powering it. This has been confirmed by observation of bolometric light decay curves forSN 1987A. Between 600 and 800 days after SN1987A occurred, the bolometric light curve decreased at an exponential rate withhalf-life values from τ1/2 = 68.6 days to τ1/2 = 69.6 days.[6] The rate at which the luminosity decreased closely matched the exponential decay of56Co with a half-life of τ1/2 = 77.233 days.

Use of cobalt radioisotopes in medicine

[edit]

Cobalt-57 (57Co or Co-57) is used in medical tests; it is used as aradiolabel for vitamin B12 uptake. It is useful for theSchilling test.[7]

Cobalt-60 (60Co or Co-60) is used inradiotherapy. It produces twogamma rays with energies of 1.17MeV and 1.33 MeV. The60Co source is about 2 cm indiameter and as a result produces ageometricpenumbra, making the edge of theradiation field fuzzy. The metal has the unfortunate habit of producing fine dust, causing problems with radiation protection. The60Co source is useful for about 5 years but even after this point is still very radioactive, and so cobalt machines have fallen from favor in the Western world whereLinacs are common.

Industrial uses for radioactive isotopes

[edit]

Cobalt-60 (60Co) is useful as a gamma ray source because it can be produced in predictable quantities, and for its highradioactivity simply by exposing natural cobalt toneutrons in a reactor.[8] The uses for industrial cobalt include:

57Co is used as a source inMössbauer spectroscopy of iron-containing samples. Electron capture by57Co forms an excited state of the57Fe nucleus, which in turn decays to the ground state with the emission of a gamma ray. Measurement of the gamma-ray spectrum provides information about the chemical state of the iron atom in the sample.

References

[edit]
  1. ^abcdKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Cobalt".CIAAW. 2017.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Diaz, L. E."Cobalt-57: Production".JPNM Physics Isotopes.University of Harvard. Archived fromthe original on 2000-10-31. Retrieved2013-11-15.
  5. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  6. ^Bouchet, P.; Danziger, I.J.; Lucy, L.B. (September 1991)."Bolometric Light Curve of SN 1987A: Results from Day 616 to 1316 After Outburst".The Astronomical Journal.102 (3):1135–1146.doi:10.1086/115939 – via Astrophysics Data System.
  7. ^Diaz, L. E."Cobalt-57: Uses".JPNM Physics Isotopes.University of Harvard. Archived fromthe original on 2011-06-11. Retrieved2010-09-13.
  8. ^"Properties of Cobalt-60".Radioactive Isotopes. Retrieved2022-12-09.
  9. ^"Beneficial Uses of Cobalt-60".INTERNATIONAL IRRADIATION ASSOCIATION. Retrieved2022-12-09.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_cobalt&oldid=1277275665#Cobalt-56"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp