| ||||||||||||||||||||||||||||||||||||
Standard atomic weightAr°(Co) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurringcobalt, Co, consists of a single stableisotope,59Co (thus, cobalt is amononuclidic element). Twenty-eightradioisotopes have been characterized; the most stable are60Co with ahalf-life of 5.2714 years,57Co (271.811 days),56Co (77.236 days), and58Co (70.844 days). All other isotopes have half-lives of less than 18 hours and most of these have half-lives of less than 1 second. This element also has 19meta states, of which the most stable is58m1Co with a half-life of 8.853 h.
The isotopes of cobalt range inatomic weight from50Co to78Co. The maindecay mode for isotopes with atomic mass less than that of the stable isotope,59Co, iselectron capture and the main mode of decay for those of greater than 59 atomic mass units isbeta decay. The maindecay products before59Co areiron isotopes and the main products after arenickel isotopes.
Radioisotopes can be produced by variousnuclear reactions. For example,57Co is produced bycyclotron irradiation of iron. The main reaction is the (d,n) reaction56Fe +2H → n +57Co.[4]
Nuclide [n 1] | Z | N | Isotopic mass(Da)[5] [n 2][n 3] | Half-life[1] [n 4] | Decay mode[1] [n 5] | Daughter isotope [n 6] | Spin and parity[1] [n 7][n 4] | Isotopic abundance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 4] | |||||||||||||||||||
50Co | 27 | 23 | 49.98112(14) | 38.8(2) ms | β+, p (70.5%) | 49Mn | (6+) | ||||||||||||
β+ (29.5%) | 50Fe | ||||||||||||||||||
β+, 2p? | 48Cr | ||||||||||||||||||
51Co | 27 | 24 | 50.970647(52) | 68.8(19) ms | β+ (96.2%) | 51Fe | 7/2− | ||||||||||||
β+, p (<3.8%) | 50Mn | ||||||||||||||||||
52Co | 27 | 25 | 51.9631302(57) | 111.7(21) ms | β+ | 52Fe | 6+ | ||||||||||||
β+, p? | 51Mn | ||||||||||||||||||
52mCo | 376(9) keV | 102(5) ms | β+ | 52Fe | 2+ | ||||||||||||||
IT? | 52Co | ||||||||||||||||||
β+, p? | 51Mn | ||||||||||||||||||
53Co | 27 | 26 | 52.9542033(19) | 244.6(28) ms | β+ | 53Fe | 7/2−# | ||||||||||||
53mCo | 3174.3(9) keV | 250(10) ms | β+? (~98.5%) | 53Fe | (19/2−) | ||||||||||||||
p (~1.5%) | 52Fe | ||||||||||||||||||
54Co | 27 | 27 | 53.94845908(38) | 193.27(6) ms | β+ | 54Fe | 0+ | ||||||||||||
54mCo | 197.57(10) keV | 1.48(2) min | β+ | 54Fe | 7+ | ||||||||||||||
55Co | 27 | 28 | 54.94199642(43) | 17.53(3) h | β+ | 55Fe | 7/2− | ||||||||||||
56Co | 27 | 29 | 55.93983803(51) | 77.236(26) d | β+ | 56Fe | 4+ | ||||||||||||
57Co | 27 | 30 | 56.93628982(55) | 271.811(32) d | EC | 57Fe | 7/2− | ||||||||||||
58Co | 27 | 31 | 57.9357513(12) | 70.844(20) d | EC (85.21%) | 58Fe | 2+ | ||||||||||||
β+ (14.79%) | 58Fe | ||||||||||||||||||
58m1Co | 24.95(6) keV | 8.853(23) h | IT | 58Co | 5+ | ||||||||||||||
EC (0.00120%) | 58Fe | ||||||||||||||||||
58m2Co | 53.15(7) keV | 10.5(3) μs | IT | 58Co | 4+ | ||||||||||||||
59Co | 27 | 32 | 58.93319352(43) | Stable | 7/2− | 1.0000 | |||||||||||||
60Co | 27 | 33 | 59.93381554(43) | 5.2714(6) y | β− | 60Ni | 5+ | ||||||||||||
60mCo | 58.59(1) keV | 10.467(6) min | IT (99.75%) | 60Co | 2+ | ||||||||||||||
β− (0.25%) | 60Ni | ||||||||||||||||||
61Co | 27 | 34 | 60.93247603(90) | 1.649(5) h | β− | 61Ni | 7/2− | ||||||||||||
62Co | 27 | 35 | 61.934058(20) | 1.54(10) min | β− | 62Ni | (2)+ | ||||||||||||
62mCo | 22(5) keV | 13.86(9) min | β− (>99.5%) | 62Ni | (5)+ | ||||||||||||||
IT (<0.5%) | 62Co | ||||||||||||||||||
63Co | 27 | 36 | 62.933600(20) | 26.9(4) s | β− | 63Ni | 7/2− | ||||||||||||
64Co | 27 | 37 | 63.935810(21) | 300(30) ms | β− | 64Ni | 1+ | ||||||||||||
64mCo | 107(20) keV | 300# ms | β−? | 64Ni | 5+# | ||||||||||||||
IT? | 64Co | ||||||||||||||||||
65Co | 27 | 38 | 64.9364621(22) | 1.16(3) s | β− | 65Ni | (7/2)− | ||||||||||||
66Co | 27 | 39 | 65.939443(15) | 194(17) ms | β− | 66Ni | (1+) | ||||||||||||
β−,n? | 65Ni | ||||||||||||||||||
66m1Co | 175.1(3) keV | 824(22) ns | IT | 66Co | (3+) | ||||||||||||||
66m2Co | 642(5) keV | >100 μs | IT | 66Co | (8−) | ||||||||||||||
67Co | 27 | 40 | 66.9406096(69) | 329(28) ms | β− | 67Ni | (7/2−) | ||||||||||||
β−, n? | 66Ni | ||||||||||||||||||
67mCo | 491.55(11) keV | 496(33) ms | IT (>80%) | 67Co | (1/2−) | ||||||||||||||
β− | 67Ni | ||||||||||||||||||
68Co | 27 | 41 | 67.9445594(41) | 200(20) ms | β− | 68Ni | (7−) | ||||||||||||
β−, n? | 67Ni | ||||||||||||||||||
68m1Co[n 8] | 150(150)# keV | 1.6(3) s | β− | 68Ni | (2−) | ||||||||||||||
β−, n (>2.6%) | 67Ni | ||||||||||||||||||
68m2Co | 195(150)# keV | 101(10) ns | IT | 68Co | (1) | ||||||||||||||
69Co | 27 | 42 | 68.945909(92) | 180(20) ms | β− | 69Ni | (7/2−) | ||||||||||||
β−, n? | 68Ni | ||||||||||||||||||
69mCo[n 8] | 170(90) keV | 750(250) ms | β− | 69Ni | 1/2−# | ||||||||||||||
70Co | 27 | 43 | 69.950053(12) | 508(7) ms | β− | 70Ni | (1+) | ||||||||||||
β−, n? | 69Ni | ||||||||||||||||||
β−, 2n? | 68Ni | ||||||||||||||||||
70mCo[n 8] | 200(200)# keV | 112(7) ms | β− | 70Ni | (7−) | ||||||||||||||
IT? | 70Co | ||||||||||||||||||
β−, n? | 69Ni | ||||||||||||||||||
β−, 2n? | 68Ni | ||||||||||||||||||
71Co | 27 | 44 | 70.95237(50) | 80(3) ms | β− (97%) | 71Ni | (7/2−) | ||||||||||||
β−, n (3%) | 70Ni | ||||||||||||||||||
72Co | 27 | 45 | 71.95674(32)# | 51.5(3) ms | β− (<96%) | 72Ni | (6−,7−) | ||||||||||||
β−, n (>4%) | 71Ni | ||||||||||||||||||
β−, 2n? | 70Ni | ||||||||||||||||||
72mCo[n 8] | 200(200)# keV | 47.8(5) ms | β− | 72Ni | (0+,1+) | ||||||||||||||
73Co | 27 | 46 | 72.95924(32)# | 42.0(8) ms | β− (94%) | 73Ni | (7/2−) | ||||||||||||
β−, n (6%) | 72Ni | ||||||||||||||||||
β−, 2n? | 71Ni | ||||||||||||||||||
74Co | 27 | 47 | 73.96399(43)# | 31.3(13) ms | β− (82%) | 74Ni | 7−# | ||||||||||||
β−, n (18%) | 73Ni | ||||||||||||||||||
β−, 2n? | 72Ni | ||||||||||||||||||
75Co | 27 | 48 | 74.96719(43)# | 26.5(12) ms | β− (>84%) | 75Ni | 7/2−# | ||||||||||||
β−, n (<16%) | 74Ni | ||||||||||||||||||
β−, 2n? | 73Ni | ||||||||||||||||||
76Co | 27 | 49 | 75.97245(54)# | 23(6) ms | β− | 76Ni | (8−) | ||||||||||||
β−, n? | 75Ni | ||||||||||||||||||
β−, 2n? | 74Ni | ||||||||||||||||||
76m1Co[n 8] | 100(100)# keV | 16(4) ms | β− | 76Ni | (1−) | ||||||||||||||
76m2Co | 740(100)# keV | 2.99(27) μs | IT | 76Co | (3+) | ||||||||||||||
77Co | 27 | 50 | 76.97648(64)# | 15(6) ms | β− | 77Ni | 7/2−# | ||||||||||||
β−, n? | 76Ni | ||||||||||||||||||
β−, 2n? | 75Ni | ||||||||||||||||||
β−, 3n? | 74Ni | ||||||||||||||||||
78Co | 27 | 51 | 77.983 55(75)# | 11# ms [>410 ns] | β−? | 78Ni | |||||||||||||
This table header & footer: |
EC: | Electron capture |
IT: | Isomeric transition |
n: | Neutron emission |
p: | Proton emission |
One of the terminal nuclear reactions in stars prior tosupernova produces56Ni. Following its production,56Ni decays to56Co, and then56Co subsequently decays to56Fe. These decay reactions power the luminosity displayed inlight decay curves. Both the light decay andradioactive decay curves are expected to be exponential. Therefore, the light decay curve should give an indication of the nuclear reactions powering it. This has been confirmed by observation of bolometric light decay curves forSN 1987A. Between 600 and 800 days after SN1987A occurred, the bolometric light curve decreased at an exponential rate withhalf-life values from τ1/2 = 68.6 days to τ1/2 = 69.6 days.[6] The rate at which the luminosity decreased closely matched the exponential decay of56Co with a half-life of τ1/2 = 77.233 days.
Cobalt-57 (57Co or Co-57) is used in medical tests; it is used as aradiolabel for vitamin B12 uptake. It is useful for theSchilling test.[7]
Cobalt-60 (60Co or Co-60) is used inradiotherapy. It produces twogamma rays with energies of 1.17MeV and 1.33 MeV. The60Co source is about 2 cm indiameter and as a result produces ageometricpenumbra, making the edge of theradiation field fuzzy. The metal has the unfortunate habit of producing fine dust, causing problems with radiation protection. The60Co source is useful for about 5 years but even after this point is still very radioactive, and so cobalt machines have fallen from favor in the Western world whereLinacs are common.
Cobalt-60 (60Co) is useful as a gamma ray source because it can be produced in predictable quantities, and for its highradioactivity simply by exposing natural cobalt toneutrons in a reactor.[8] The uses for industrial cobalt include:
57Co is used as a source inMössbauer spectroscopy of iron-containing samples. Electron capture by57Co forms an excited state of the57Fe nucleus, which in turn decays to the ground state with the emission of a gamma ray. Measurement of the gamma-ray spectrum provides information about the chemical state of the iron atom in the sample.