Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Chlorophylla

From Wikipedia, the free encyclopedia
Chlorophylla
Structure of chlorophyll a
Structure of chlorophylla
Names
IUPAC name
Chlorophylla
Systematic IUPAC name
Magnesium [methyl (3S,4S,21R)-14-ethyl-4,8,13,18-tetramethyl-20-oxo-3-(3-oxo-3-{[(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecen-1-yl]oxy}propyl)-9-vinyl-21-phorbinecarboxylatato(2−)-κ2N,N′]
Other names
α-Chlorophyll
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard100.006.852Edit this at Wikidata
EC Number
  • 207-536-6
RTECS number
  • FW6420000
UNII
  • InChI=1S/C55H73N4O5.Mg/c1-13-39-35(8)42-28-44-37(10)41(24-25-48(60)64-27-26-34(7)23-17-22-33(6)21-16-20-32(5)19-15-18-31(3)4)52(58-44)50-51(55(62)63-12)54(61)49-38(11)45(59-53(49)50)30-47-40(14-2)36(9)43(57-47)29-46(39)56-42;/h13,26,28-33,37,41,51H,1,14-25,27H2,2-12H3,(H-,56,57,58,59,61);/q-1;+2/p-1/b34-26+;/t32-,33-,37+,41+,51-;/m1./s1 checkY
    Key: ATNHDLDRLWWWCB-AENOIHSZSA-M checkY
  • InChI=1S/C55H73N4O5.Mg/c1-13-39-35(8)42-28-44-37(10)41(24-25-48(60)64-27-26-34(7)23-17-22-33(6)21-16-20-32(5)19-15-18-31(3)4)52(58-44)50-51(55(62)63-12)54(61)49-38(11)45(59-53(49)50)30-47-40(14-2)36(9)43(57-47)29-46(39)56-42;/h13,26,28-33,37,41,51H,1,14-25,27H2,2-12H3,(H-,56,57,58,59,61);/q-1;+2/p-1/b34-26+;/t32?,33?,37-,41-,51+;/m0./s1
    Key: ATNHDLDRLWWWCB-WJQLOWBJSA-M
  • CCC1=C(C2=NC1=CC3=C(C4=C([N-]3)C(=C5[C@H]([C@@H](C(=N5)C=C6C(=C(C(=C2)[N-]6)C=C)C)C)CCC(=O)OC/C=C(\C)/CCCC(C)CCCC(C)CCCC(C)C)[C@H](C4=O)C(=O)OC)C)C.[Mg+2]
  • COC(=O)C9C(=O)c6c(C)c3N7c6c9c2C(CCC(=O)COCC=C(C)CCCC(C)CCCC(C)CCCC(C)C)C(C)c1cc5N8c(cc4n([Mg]78n12)c(c=3)c(CC)c4c)c(C=C)c5C
Properties
C55H72MgN4O5
Molar mass893.509 g·mol−1
AppearanceDark green powder
OdorOdorless
Density1.079 g/cm3[1]
Melting point~ 152.3 °C (306.1 °F; 425.4 K)[2]
decomposes[1]
Insoluble
SolubilityVery soluble inethanol,ether
Soluble inligroin,[2]acetone,benzene,chloroform[1]
AbsorbanceSee text
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Chlorophylla is a specific form ofchlorophyll used inoxygenicphotosynthesis. It absorbs most energy fromwavelengths of violet-blue and orange-red light, and it is a poor absorber of green and near-green portions of the spectrum.[3] Chlorophyll does not reflect light but chlorophyll-containing tissues appear green because green light is diffusively reflected by structures like cell walls.[4] Thisphotosynthetic pigment is essential for photosynthesis ineukaryotes,cyanobacteria andprochlorophytes because of its role as primary electron donor in theelectron transport chain.[5] Chlorophylla also transfers resonance energy in theantenna complex, ending in thereaction center where specific chlorophyllsP680 andP700 are located.[6]

Distribution of chlorophylla

[edit]

Chlorophylla is essential for mostphotosynthetic organisms to releasechemical energy but is not the only pigment that can be used for photosynthesis. All oxygenic photosynthetic organisms use chlorophylla, but differ inaccessory pigments likechlorophyllb.[5] Chlorophylla can also be found in very small quantities in thegreen sulfur bacteria, ananaerobicphotoautotroph.[7] These organisms usebacteriochlorophyll and some chlorophylla but do not produce oxygen.[7]Anoxygenic photosynthesis is the term applied to this process, unlikeoxygenic photosynthesis where oxygen is produced during the light reactions ofphotosynthesis.

Molecular structure

[edit]

The molecular structure of chlorophylla consists of achlorin ring, whose four nitrogen atoms surround a centralmagnesium atom, and has several other attachedside chains and ahydrocarbon tail formed by aphytolester.

Structure of chlorophylla molecule showing the phytol tail

Chlorin ring

[edit]
Chlorin, the central ring structure of the chlorophylla

Chlorophylla contains a magnesiumion encased in a large ring structure known as achlorin. The chlorin ring is aheterocyclic compound derived frompyrrole. Four nitrogen atoms from the chlorin surround and bind the magnesium atom. The magnesium center uniquely defines the structure as a chlorophyll molecule.[8] The porphyrin ring ofbacteriochlorophyll is saturated, and lacking alternation of double and single bonds causing variation in absorption of light.[9]

Side chains

[edit]
The green boxed CH3 is themethyl group at the C-7 position chlorophylla

Side chains are attached to the chlorin ring of the various chlorophyll molecules. Different side chains characterize each type of chlorophyll molecule, and alters the absorption spectrum of light.[10][11] For instance, the only difference between chlorophylla andchlorophyllb is that chlorophyllb has analdehyde instead of a methyl group at the C-7 position.[11]

Hydrocarbon tail

[edit]

The phytol ester of chlorophylla (R in the diagram) is a longhydrophobic tail which anchors the molecule to other hydrophobic proteins in thethylakoid membrane of thechloroplast.[5] Once detached from the porphyrin ring, phytol becomes the precursor of twobiomarkers,pristane andphytane, which are important in the study ofgeochemistry and the determination of petroleum sources.[12]

Biosynthesis

[edit]
Main article:Chlorophyllide

The Chlorophyllabiosynthetic pathway utilizes a variety ofenzymes.[13] In most plants, chlorophyll is derived fromglutamate and is synthesised along a branched pathway that is shared withheme andsiroheme.[14][15][16]The initial steps incorporate glutamic acid into5-aminolevulinic acid (ALA); two molecules of ALA are thenreduced toporphobilinogen (PBG), and four molecules of PBG are coupled, formingprotoporphyrin IX.[8]

Chlorophyll synthase[17] is the enzyme that completes the biosynthesis of chlorophylla[18][19] by catalysing the reactionEC2.5.1.62

chlorophyllidea + phytyl diphosphate{\displaystyle \rightleftharpoons } chlorophylla + diphosphate

This forms an ester of the carboxylic acid group inchlorophyllidea with the 20-carbonditerpene alcoholphytol.

Reactions of photosynthesis

[edit]

Absorbance of light

[edit]

Light spectrum

[edit]
Absorption spectrum of chlorophylla and chlorophyllb. The use of both together enhances the size of the absorption of light for producing energy.

Chlorophylla absorbs light within theviolet,blue andred wavelengths. Accessory photosynthetic pigments broaden the spectrum of light absorbed, increasing the range of wavelengths that can be used in photosynthesis.[5] The addition of chlorophyllb next to chlorophylla extends theabsorption spectrum. In low light conditions, plants produce a greater ratio of chlorophyllb to chlorophylla molecules, increasing photosynthetic yield.[10]

Light gathering

[edit]
The antenna complex with energy transfer within the thylakoid membrane of a chloroplast. Chlorophylla in the reaction center is the only pigment to pass boosted electrons to an acceptor (modified from 2).

Absorption of light by photosynthetic pigments converts photons into chemical energy.Light energy radiating onto thechloroplast strikes the pigments in thethylakoid membrane and excites their electrons. Since the chlorophylla molecules only capture certain wavelengths, organisms may use accessory pigments to capture a wider range of light energy shown as the yellow circles.[6] It then transfers captured light from one pigment to the next as resonance energy, passing energy one pigment to the other until reaching the special chlorophylla molecules in the reaction center.[10] These special chlorophylla molecules are located in bothphotosystem II andphotosystem I. They are known asP680 for Photosystem II andP700 for Photosystem I.[20] P680 and P700 are the primaryelectron donors to the electron transport chain. These two systems are different in their redox potentials for one-electron oxidation. The Em for P700 is approximately 500mV, while the Em for P680 is approximately 1,100-1,200 mV.[20]

Primary electron donation

[edit]

Chlorophylla is very important in the energy phase of photosynthesis. Twoelectrons need to be passed to anelectron acceptor for the process of photosynthesis to proceed.[5] Within thereaction centers of both photosystems there are a pair of chlorophylla molecules that pass electrons on to thetransport chain throughredox reactions.[20]

Ocean

[edit]

The concentration of chlorophyll A is used as an index of phytoplankton biomass. In the ocean, phytoplankton all contain the chlorophyll pigment, which has a greenish color.

Phytoplankton are microscopic organisms that live in watery environments and changes in the amount of phytoplankton indicate the change in productivity of the ocean. Phytoplankton can be affected indirectly by climatic factors, such as changes in water temperatures and surface winds.[21]

See also

[edit]

References

[edit]
  1. ^abcAnatolievich KR."Chlorophylla".chemister.ru. Archived fromthe original on 2014-11-29. Retrieved2014-08-23.
  2. ^abLide, David R., ed. (2009).CRC Handbook of Chemistry and Physics (90th ed.).Boca Raton, Florida:CRC Press.ISBN 978-1-4200-9084-0.
  3. ^"Photosynthesis". Archived fromthe original on 2009-11-28.
  4. ^Virtanen O, Constantinidou E, Tyystjärvi E (December 2020)."Chlorophyll does not reflect green light - how to correct a misconception".Journal of Biological Education.56 (5):552–559.doi:10.1080/00219266.2020.1858930.
  5. ^abcdeRaven PH, Evert RF, Eichhorn SE (2005). "Photosynthesis, Light, and Life".Biology of Plants (7th ed.). W. H. Freeman. pp. 119–127.ISBN 0-7167-9811-5.
  6. ^abPapageorgiou G,Govindjee (2004).Chlorophylla Fluorescence, A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 19. Springer. pp. 14, 48, 86.
  7. ^abEisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, et al. (July 2002)."The complete genome sequence ofChlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium".Proceedings of the National Academy of Sciences of the United States of America.99 (14):9509–14.Bibcode:2002PNAS...99.9509E.doi:10.1073/pnas.132181499.PMC 123171.PMID 12093901.
  8. ^abZeiger E, Taiz L (2006)."Ch. 7: Topic 7.11: Chlorophyll Biosynthesis".Plant physiology (4th ed.). Sunderland, MA: Sinauer Associates.ISBN 0-87893-856-7. Archived fromthe original on 2020-08-07. Retrieved2010-05-05.
  9. ^Campbell MK, Farrell SO (20 November 2007).Biochemistry (6th ed.). Cengage Learning. p. 647.ISBN 978-0-495-39041-1.
  10. ^abcLange L, Nobel P, Osmond C, Ziegler H (1981).Physiological Plant Ecology I – Responses to the Physical Environment. Vol. 12A. Springer-Verlag. pp. 67, 259.
  11. ^abNiedzwiedzki DM,Blankenship RE (December 2010). "Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls".Photosynthesis Research.106 (3):227–38.doi:10.1007/s11120-010-9598-9.PMID 21086044.S2CID 28352285.
  12. ^Eglinton, G.; S. C. Brassell; Simoneit, B. R. T.; Didyk, B. M. (March 1978). "Organic geochemical indicators of palaeoenvironmental conditions of sedimentation".Nature.272 (5650):216–222.Bibcode:1978Natur.272..216D.doi:10.1038/272216a0.ISSN 1476-4687.S2CID 128737515.
  13. ^Suzuki JY, Bollivar DW, Bauer CE (1997). "Genetic analysis of chlorophyll biosynthesis".Annual Review of Genetics.31 (1):61–89.doi:10.1146/annurev.genet.31.1.61.PMID 9442890.
  14. ^Battersby, A. R. (2000). "Tetrapyrroles: the Pigments of Life. A Millennium review".Nat. Prod. Rep.17 (6):507–526.doi:10.1039/B002635M.PMID 11152419.
  15. ^Akhtar, M. (2007). "The Modification of Acetate and Propionate Side Chains During the Biosynthesis of Haem and Chlorophylls: Mechanistic and Stereochemical Studies".Ciba Foundation Symposium 180 - the Biosynthesis of the Tetrapyrrole Pigments. Novartis Foundation Symposia. Vol. 180. pp. 131–155.doi:10.1002/9780470514535.ch8.ISBN 9780470514535.PMID 7842850.
  16. ^Willows, Robert D. (2003). "Biosynthesis of chlorophylls from protoporphyrin IX".Natural Product Reports.20 (6):327–341.doi:10.1039/B110549N.PMID 12828371.
  17. ^Schmid, H. C.; Rassadina, V.; Oster, U.; Schoch, S.; Rüdiger, W. (2002)."Pre-Loading of Chlorophyll Synthase with Tetraprenyl Diphosphate is an Obligatory Step in Chlorophyll Biosynthesis"(PDF).Biological Chemistry.383 (11):1769–78.doi:10.1515/BC.2002.198.PMID 12530542.S2CID 3099209.
  18. ^Eckhardt, Ulrich; Grimm, Bernhard; Hortensteiner, Stefan (2004)."Recent advances in chlorophyll biosynthesis and breakdown in higher plants".Plant Molecular Biology.56 (1):1–14.doi:10.1007/s11103-004-2331-3.PMID 15604725.S2CID 21174896.
  19. ^Bollivar, David W. (2007). "Recent advances in chlorophyll biosynthesis".Photosynthesis Research.90 (2):173–194.doi:10.1007/s11120-006-9076-6.PMID 17370354.S2CID 23808539.
  20. ^abcIshikita H, Saenger W, Biesiadka J, Loll B, Knapp EW (June 2006)."How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870".Proceedings of the National Academy of Sciences of the United States of America.103 (26):9855–60.Bibcode:2006PNAS..103.9855I.doi:10.1073/pnas.0601446103.PMC 1502543.PMID 16788069.
  21. ^"Nauru Environment Data Portal | Environmental Information for Decision Making".nauru-data.sprep.org. Retrieved2024-01-27.

External links

[edit]
Betalains
Chlorophyll
Curcuminoids
Flavonoids
Carotenoids
Other
Bilanes
(Linear)
Phytobilins
Phycobilins
Macrocycle
Corrinoids
Porphyrins
Protoporphyrins
Phytoporphyrins
Reduced
porphyrins
Porphyrinogens
Chlorins
Bacteriochlorins
Isobacteriochlorins
Corphins
Retrieved from "https://en.wikipedia.org/w/index.php?title=Chlorophyll_a&oldid=1276565788"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp