This article is about storing carbon so that it is not in the atmosphere. For removing carbon dioxide from industrial point sources before it enters the atmosphere, seeCarbon capture and storage. For removing carbon dioxide from the atmosphere (and negative emissions), seeCarbon dioxide removal.
Carbon sequestration is the process of storing carbon in acarbon pool.[2]: 2248 It plays a crucial role inlimiting climate change by reducing the amount ofcarbon dioxide in the atmosphere. There are two main types of carbon sequestration: biologic (also calledbiosequestration) and geologic.[3]
Biologic carbon sequestration is a naturally occurring process as part of thecarbon cycle. Humans can enhance it through deliberate actions and use of technology. Carbon dioxide (CO 2) is naturally captured from theatmosphere through biological, chemical, and physical processes. These processes can be accelerated for example through changes in land use and agricultural practices, calledcarbon farming. Artificial processes have also been devised to produce similar effects. This approach is calledcarbon capture and storage. It involves using technology to capture and sequester (store)CO 2 that is produced from human activities underground or under the sea bed.
Plants, such as forests andkelp beds, absorb carbon dioxide from the air as they grow, and bind it into biomass. However, these biological stores may be temporarycarbon sinks, as long-term sequestration cannot be guaranteed.Wildfires, disease, economic pressures, and changing political priorities may release the sequestered carbon back into the atmosphere.[4]
Carbon dioxide that has been removed from the atmosphere can also be stored in the Earth's crust by injecting it underground, or in the form ofinsolublecarbonate salts. The latter process is calledmineral sequestration. These methods are considerednon-volatile because they not only remove carbon dioxide from the atmosphere but also sequester it indefinitely. This means the carbon is "locked away" for thousands to millions of years.
To enhance carbon sequestration processes in oceans the following chemical or physical technologies have been proposed:ocean fertilization,artificial upwelling, basalt storage, mineralization and deep-sea sediments, and adding bases to neutralize acids.[5] However, none have achieved large scale application so far. Large-scaleseaweed farming on the other hand is a biological process and could sequester significant amounts of carbon.[6] The potential growth of seaweed for carbon farming would see the harvested seaweed transported to the deep ocean for long-term burial.[7] The IPCCSpecial Report on the Ocean and Cryosphere in a Changing Climate recommends "further research attention" on seaweed farming as a mitigation tactic.[8]
The termcarbon sequestration is used in different ways in the literature and media. TheIPCC Sixth Assessment Report defines it as "The process of storing carbon in a carbon pool".[9]: 2248 Subsequently, apool is defined as "a reservoir in the Earth system where elements, such as carbon and nitrogen, reside in various chemical forms for a period of time".[9]: 2244
TheUnited States Geological Survey (USGS) definescarbon sequestration as follows: "Carbon sequestration is the process of capturing and storing atmospheric carbon dioxide."[3] Therefore, the difference between carbon sequestration andcarbon capture and storage (CCS) is sometimes blurred in the media.[citation needed] The IPCC, however, defines CCS as "a process in which a relatively pure stream ofcarbon dioxide (CO2) from industrial sources is separated, treated and transported to a long-term storage location".[10]: 2221
Plants, such as forests andkelp beds, absorb carbon dioxide from the air as they grow, and bind it intobiomass. However, these biological stores are consideredvolatilecarbon sinks as long-term sequestration cannot be guaranteed. Events such aswildfires or disease, economic pressures, and changing political priorities can result in the sequestered carbon being released back into the atmosphere.[4]
Carbon sequestration, when applied for climate change mitigation, can either build on enhancing naturally occurring carbon sequestration or use technology for carbon sequestration processes.[needs copy edit]
Within the carbon capture and storage approaches,carbon sequestration refers to thestorage component. Artificial carbon storage technologies can be applied, such as gaseous storage in deep geological formations (including saline formations and exhausted gas fields), and solid storage by reaction of CO2 with metaloxides to produce stablecarbonates.[12]
For carbon to be sequestered artificially (i.e. not using the natural processes of the carbon cycle) it must first be captured,or it must be significantly delayed or prevented from being re-released into the atmosphere (by combustion, decay, etc.) from an existing carbon-rich material, by being incorporated into an enduring usage (such as in construction).[needs copy edit] Thereafter it can be passively stored or remain productively utilized over time in a variety of ways. For instance, upon harvesting, wood (as a carbon-rich material) can be incorporated into construction or a range of other durable products, thus sequestering its carbon over years or even centuries.[13] In industrial production, engineers typically capture carbon dioxide from emissions from power plants or factories.
For example, in theUnited States, theExecutive Order 13990 (officially titled "Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis") from 2021, includes several mentions of carbon sequestration via conservation and restoration of carbon sink ecosystems, such as wetlands and forests. The document emphasizes the importance of farmers, landowners, and coastal communities in carbon sequestration. It directs theTreasury Department to promote conservation of carbon sinks through market based mechanisms.[14]
Biological carbon sequestration (also calledbiosequestration) is the capture and storage of the atmospheric greenhouse gas carbon dioxide by continual[contradictory]or enhanced biological processes. This form of carbon sequestration occurs through increased rates ofphotosynthesis vialand-use practices such asreforestation andsustainableforest management.[15][16]Land-use changes that enhance natural carbon capture have the potential to capture and store large amounts of carbon dioxide each year. These include the conservation, management, and restoration ofecosystems such as forests,peatlands,wetlands, andgrasslands, in addition to carbon sequestration methods in agriculture.[17] Methods and practices exist to enhancesoil carbon sequestration in bothagriculture andforestry.[18][19][20]
Proportion of carbon stock in forest carbon pools, 2020[21]
Forests are an important part of theglobal carbon cycle because trees and plants absorbcarbon dioxide throughphotosynthesis. Therefore, they play an important role inclimate change mitigation.[22]: 37 By removing thegreenhouse gas carbon dioxide from the air, forests function as terrestrialcarbon sinks, meaning they store large amounts of carbon in the form of biomass, encompassing roots, stems, branches, and leaves. Throughout their lifespan, trees continue to sequester carbon, storing atmospheric CO2 long-term.[23]Sustainable forest management,afforestation,reforestation are therefore important contributions to climate change mitigation.
An important consideration in such efforts is that forests can turn from sinks to carbon sources.[24][25][26] In 2019 forests took up a third less carbon than they did in the 1990s, due to higher temperatures,droughts[27] anddeforestation. The typical tropical forest may become a carbon source by the 2060s.[28]
Researchers have found that, in terms ofenvironmental services, it is better to avoid deforestation than to allow for deforestation to subsequently reforest, as the latter leads to irreversible effects in terms ofbiodiversity loss andsoil degradation.[29] Furthermore, the probability that legacy carbon will be released from soil is higher in younger boreal forest.[30] Global greenhouse gas emissions caused by damage to tropical rainforests may have been substantially underestimated until around 2019.[31] Additionally, the effects of afforestation and reforestation will be farther in the future than keeping existing forests intact.[32] It takes much longer − several decades − for the benefits for global warming to manifest to the same carbon sequestration benefits from mature trees in tropical forests and hence from limiting deforestation.[33] Therefore, scientists consider "the protection and recovery of carbon-rich and long-lived ecosystems, especially natural forests" to be "the major climatesolution".[34]
The planting of trees on marginal crop andpasture lands helps to incorporate carbon from atmosphericCO 2 intobiomass.[35][36] For this carbon sequestration process to succeed the carbon must not return to the atmosphere from biomass burning or rotting when the trees die.[37] To this end, land allotted to the trees must not be converted to other uses. Alternatively, the wood from them must itself be sequestered, e.g., viabiochar,bioenergy with carbon capture and storage, landfill or stored by use in construction.
Earth offers enough room to plant an additional 0.9 billion ha of tree canopy cover, although this estimate has been criticized,[38][39] and the true area that has a net cooling effect on the climate when accounting for biophysical feedbacks like albedo is 20-80% lower.[40][41] Planting and protecting these trees would sequester 205 billion tons of carbon if the trees survive future climate stress to reach maturity.[42][41] To put this number into perspective, this is about 20 years of current global carbon emissions (as of 2019) .[43] This level of sequestration would represent about 25% of the atmosphere's carbon pool in 2019.[41]
Life expectancy of forests varies throughout the world, influenced by tree species, site conditions, and natural disturbance patterns. In some forests, carbon may be stored for centuries, while in other forests, carbon is released with frequent stand replacing fires. Forests that are harvested prior to stand replacing events allow for the retention of carbon in manufactured forest products such aslumber.[44] However, only a portion of the carbon removed from logged forests ends up as durable goods and buildings. The remainder ends up as sawmill by-products such as pulp, paper, and pallets.[45] If all new construction globally utilized 90% wood products, largely via adoption ofmass timber inlow rise construction, this could sequester 700 million net tons of carbon per year.[46][47] This is in addition to the elimination of carbon emissions from the displaced construction material such as steel or concrete, which are carbon-intense to produce.
A meta-analysis found that mixed species plantations would increase carbon storage alongside other benefits of diversifying planted forests.[9]
Although a bamboo forest stores less total carbon than a mature forest of trees, abamboo plantation sequesters carbon at a much faster rate than a mature forest or a tree plantation. Therefore, the farming of bamboo timber may have significant carbon sequestration potential.[48]
TheIPCC Sixth Assessment Report says: "Secondary forest regrowth and restoration of degraded forests and non-forest ecosystems can play a large role in carbon sequestration (high confidence) with high resilience to disturbances and additional benefits such as enhanced biodiversity."[50][51]
Impacts on temperature are affected by the location of the forest. For example, reforestation in boreal orsubarctic regions has less impact on climate. This is because it substitutes a high-albedo, snow-dominated region with a lower-albedo forest canopy. By contrast, tropical reforestation projects lead to a positive change such as the formation ofclouds. These clouds thenreflect the sunlight, lowering temperatures.[52]: 1457
Planting trees intropical climates withwet seasons has another advantage. In such a setting, trees grow more quickly (fixing more carbon) because they can grow year-round. Trees in tropical climates have, on average, larger, brighter, and more abundant leaves than non-tropical climates. A study of thegirth of 70,000 trees acrossAfrica has shown that tropical forests fix more carbon dioxide pollution than previously realized. The research suggested almost one-fifth of fossil fuel emissions are absorbed by forests across Africa,Amazonia andAsia. Simon Lewis stated, "Tropical forest trees are absorbing about 18% of the carbon dioxide added to the atmosphere each year from burning fossil fuels, substantially buffering the rate of change."[53][obsolete source]
Global distribution of blue carbon (rooted vegetation in the coastal zone): tidal marshes, mangroves and seagrasses.[54]
Wetland restoration involves restoring a wetland's natural biological, geological, and chemical functions through re-establishment or rehabilitation.[55] It is a good way to reduce climate change.[56] Wetland soil, particularly in coastal wetlands such asmangroves,sea grasses, andsalt marshes,[56] is an important carbon reservoir; 20–30% of the world'ssoil carbon is found in wetlands, while only 5–8% of the world's land is composed of wetlands.[57] Studies have shown that restored wetlands can become productiveCO2 sinks[58][59][60] and many are being restored.[61][62] Aside from climate benefits, wetland restoration and conservation can help preserve biodiversity, improvewater quality, and aid withflood control.[63]
The plants that makeup wetlands absorb carbon dioxide (CO2) from the atmosphere and convert it into organic matter. The waterlogged nature of the soil slows down the decomposition of organic material, leading to the accumulation of carbon-rich sediments,[clarification needed] acting as a long-termcarbon sink.[64][65] Also, anaerobic conditions in waterlogged soils hinder the complete breakdown of organic matter, promoting the conversion of carbon into more stable forms.[65][needs copy edit]
As with forests, for the sequestration process to succeed, the wetland must remain undisturbed. If it is disturbed the carbon stored in the plants and sediments will be released back into the atmosphere, and the ecosystem will no longer function as a carbon sink.[66] Additionally, some wetlands can release non-CO2 greenhouse gases, such asmethane[67] andnitrous oxide[68] which could offset potential climate benefits. The amounts of carbon sequestered viablue carbon by wetlands can also be difficult to measure.[63]
Wetland soil is an importantcarbon sink; 14.5% of the world'ssoil carbon is found in wetlands, while only 5.5% of the world's land is composed of wetlands.[69] Not only are wetlands a great carbon sink, they have many other benefits like collecting floodwater, filtering out air and water pollutants, and creating a home for numerous birds, fish, insects, and plants.[70]
Climate change could alter wetland soil carbon storage, changing it from a sink to a source.[71][obsolete source]With rising temperatures comes an increase ingreenhouse gasses from wetlands especially locations withpermafrost. When this permafrost melts it increases the available oxygen and water in the soil.[71] Because of this, bacteria in the soil would create large amounts of carbon dioxide and methane to be released into the atmosphere.[71][obsolete source]
The link between climate change and wetlands is still not fully known.[71][obsolete source]It is also not clear how restored wetlands manage carbon while still being a contributing source of methane. However, preserving these areas would help prevent further release of carbon into the atmosphere.[72]
Despite occupying only 3% of the global land area,peatlands hold approximately 30% of the carbon in our ecosystem - twice the amount stored in the world's forests.[72][73] Most peatlands are situated in high latitude areas of the northern hemisphere, with most of their growth occurring since the lastice age,[74] but they are also found in tropical regions, such as the Amazon and Congo Basin.[75]
Peatlands grow steadily over thousands of years, accumulating dead plant material – and the carbon contained within it – due to waterlogged conditions which greatly slow rates of decay.[74] If peatlands are drained, forfarmland or development, the plant material stored within them decomposes rapidly, releasing stored carbon. These degraded peatlands account for 5-10% of globalcarbon emissions from human activities.[74][76] The loss of one peatland could potentially produce more carbon than 175–500 years ofmethane emissions.[71]
Peatland protection and restoration are therefore important measures to mitigate carbon emissions, and also provide benefits for biodiversity,[76] freshwater provision, and flood risk reduction.[77]
Panicum virgatum switchgrass, valuable inbiofuel production, soil conservation, and carbon sequestration in soils.
Compared to natural vegetation, cropland soils are depleted in soil organic carbon (SOC). When soil is converted from natural land or semi-natural land, such as forests, woodlands, grasslands, steppes, and savannas, the SOC content in the soil reduces by about 30–40%.[78] This loss is due toharvesting, as plants contain carbon. Whenland use changes, the carbon in the soil will either increase or decrease, and this change will continue until the soil reaches a new equilibrium. Deviations from this equilibrium can also be affected by variated[clarification needed] climate.[79]
The decreasing of SOC content can be counteracted by increasing the carbon input. This can be done with several strategies, e.g. leave harvest residues on the field, use manure as fertilizer, or include perennial crops in the rotation.Perennial crops have a larger below-ground biomass fraction, which increases the SOC content.[78]
Perennial crops reduce the need fortillage and thus help mitigate soil erosion, and may help increase soil organic matter. Globally, soils are estimated to contain >8,580 gigatons of organic carbon, about ten times the amount in the atmosphere and much more than in vegetation.[80]
Researchers have found that rising temperatures can lead to population booms in soil microbes, converting stored carbon into carbon dioxide. In laboratory experiments heating soil, fungi-rich soils released less carbon dioxide than other soils.[81]
Following carbon dioxide (CO2) absorption from the atmosphere, plants deposit organic matter into the soil.[23] This organic matter, derived from decaying plant material and root systems, is rich in carbon compounds.Microorganisms in the soil break down this organic matter, and in the process, some of the carbon becomes further stabilized in the soil ashumus - a process known ashumification.[82]
On a global basis, it is estimated that soil contains about 2,500 gigatons of carbon.[contradictory]This is greater than 3-fold the carbon found in the atmosphere and 4-fold of that found in living plants and animals.[83] About 70% of the global soil organic carbon in non-permafrost areas is found in the deeper soil within the upper metre and is stabilized by mineral-organic associations.[84]
Carbon farming is a set of agricultural methods that aim to store carbon in thesoil, crop roots, wood and leaves. The technical term for this iscarbon sequestration. The overall goal of carbon farming is to create a net loss of carbon from the atmosphere.[85] This is done by increasing the rate at which carbon is sequestered into soil and plant material. One option is to increase thesoil's organic matter content. This can also aid plant growth, improvesoil water retention capacity[86] and reducefertilizer use.[87]Sustainable forest management is another tool that is used in carbon farming.[88] Carbon farming is one component ofclimate-smart agriculture. It is also one way toremove carbon dioxide from the atmosphere.
Carbon farming methods might have additional costs. Some countries have government policies that give financial incentives to farmers to use carbon farming methods.[89] As of 2016, variants of carbon farming reached hundreds of millions of hectares globally, of the nearly 5 billion hectares (1.2×1010 acres) of world farmland.[90] Carbon farming has some disadvantages because some of its methods can affectecosystem services. For example, carbon farming could cause an increase of land clearing,monocultures andbiodiversity loss.[91] It is important to maximize environmental benefits of carbon farming by keeping in mind ecosystem services at the same time.[91]
Prairie restoration is aconservation effort to restoreprairie lands that were destroyed due to industrial,agricultural, commercial, or residential development.[92] The primary aim is to return areas and ecosystems to their previous state before their depletion.[93] The mass of SOC able to be stored in these restored plots is typically greater than the previous crop, acting as a more effective carbon sink.[94][95]
Biochar ischarcoal created bypyrolysis ofbiomass waste. The resulting material is added to alandfill or used as a soil improver to createterra preta.[96][97] Adding biochar may increase the soil-C stock for the long term and so mitigate global warming by offsetting the atmospheric C (up to 9.5 Gigatons C annually).[98] In the soil, the biochar carbon is unavailable foroxidation toCO 2 and consequential atmospheric release. However concerns have been raised about biochar potentially accelerating release of the carbon already present in the soil.[99][needs update]
Terra preta, ananthropogenic, high-carbon soil, is also being investigated as a sequestration mechanism. Bypyrolysing biomass, about half of its carbon can be reduced tocharcoal, which can persist in the soil for centuries, and makes a useful soil amendment, especially in tropical soils (biochar oragrichar).[100][101]
Burying biomass (such as trees) directly mimics the natural processes that createdfossil fuels.[102] The global potential for carbon sequestration using wood burial is estimated to be 10 ± 5 GtC/yr and largest rates in tropical forests (4.2 GtC/yr), followed by temperate (3.7 GtC/yr) and boreal forests (2.1 GtC/yr).[13] In 2008,Ning Zeng of the University of Maryland estimated 65 GtC[needs update] lying on the floor of the world's forests as coarse woody material which could be buried and costs for wood burial carbon sequestration run at US$50/tC which is much lower than carbon capture from e.g. power plant emissions.[13] CO2 fixation into woody biomass is a natural process carried out throughphotosynthesis. This is a nature-based solution and methods being trialled include the use of "wood vaults" to store the wood-containing carbon under oxygen-free conditions.[103]
In 2022, a certification organization published methodologies for biomass burial.[104] Other biomass storage proposals have included the burial of biomass deep underwater, including at the bottom of theBlack Sea.[105]
Geological sequestration refers to the storage of CO2 underground in depleted oil and gas reservoirs, saline formations, or deep, coal beds unsuitable for mining.[106]
Once CO2 is captured from a point source, such as a cement factory,[107] it can be compressed to ≈100 bar into asupercritical fluid. Inthis form, the CO2 could be transported via pipeline to the place of storage. The CO2 could then be injected deep underground, typically around 1 km (0.6 mi), where it would be stable for hundreds to millions of years.[108] Under these storage conditions, the density ofsupercritical CO2 is 600 to 800 kg/m3.[109]
The important parameters in determining a good site for carbon storage are: rock porosity, rock permeability, absence of faults, and geometry of rock layers. The medium in which the CO2 is to be stored ideally has a high porosity and permeability, such as sandstone or limestone. Sandstone can have a permeability ranging from 1 to 10−5Darcy, with a porosity as high as ≈30%. The porous rock must be capped by a layer of low permeability which acts as a seal, or caprock, for the CO2. Shale is an example of a very good caprock, with a permeability of 10−5 to 10−9 Darcy. Once injected, the CO2 plume will rise via buoyant forces, since it is less dense than its surroundings. Once it encounters a caprock, it will spread laterally until it encounters a gap. If there are fault planes near the injection zone, there is a possibility the CO2 could migrate along the fault to the surface, leaking into the atmosphere, which would be potentially dangerous to life in the surrounding area. Another risk related to carbon sequestration is induced seismicity. If the injection of CO2 creates pressures underground that are too high, the formation will fracture, potentially causing an earthquake.[110]
Structural trapping is considered the principal storage mechanism, impermeable or low permeability rocks such asmudstone,anhydrite,halite, or tight carbonates[clarification needed] act as a barrier to the upward buoyant migration of CO2, resulting in the retention of CO2 within a storage formation.[111] While trapped in a rock formation, CO2 can be in the supercritical fluid phase or dissolve in groundwater/brine. It can also react with minerals in the geologic formation to become carbonates.
Mineral sequestration aims to trap carbon in the form of solidcarbonate salts. This process occurs slowly in nature and is responsible for the deposition and accumulation oflimestone over geologic time.Carbonic acid in groundwater slowly reacts with complexsilicates to dissolvecalcium,magnesium,alkalis andsilica and leave a residue ofclay minerals. The dissolved calcium and magnesium react withbicarbonate to precipitate calcium and magnesium carbonates, a process that organisms use to make shells. When the organisms die, their shells are deposited as sediment and eventually turn into limestone. Limestones have accumulated over billions of years of geologic time and contain much of Earth's carbon. Ongoing research aims to speed up similar reactions involving alkali carbonates.[112]
This section needs to beupdated. Please help update this article to reflect recent events or newly available information.(June 2019)
CO2exothermically reacts with metal oxides, producing stable carbonates (e.g.calcite,magnesite). This process (CO2-to-stone) occurs naturally over periods of years and is responsible for much surfacelimestone.Olivine is one such metal oxide.[114][self-published source?] Rocks rich in metal oxides that react with CO2, such asMgO andCaO as contained inbasalts, have been proven as a viable means to achieve carbon-dioxide mineral storage.[115][116] The reaction rate can in principle be accelerated with acatalyst[117] or by increasing pressures, or by mineral pre-treatment, although this method can require additional energy.
Ultramaficmine tailings are a readily available source of fine-grained metal oxides that could serve this purpose.[118] Accelerating passive CO2 sequestration via mineral carbonation may be achieved through microbial processes that enhance mineral dissolution and carbonate precipitation.[119][120][121]
Carbon, in the form ofCO 2 can be removed from the atmosphere by chemical processes, and stored in stablecarbonate mineral forms. This process (CO 2-to-stone) is known as "carbon sequestration by mineralcarbonation" or mineral sequestration. The process involves reacting carbon dioxide with abundantly available metal oxides – eithermagnesium oxide (MgO) orcalcium oxide (CaO) – to form stable carbonates. These reactions areexothermic and occur naturally (e.g., theweathering of rock overgeologic time periods).[122][123]
CaO +CO 2 →CaCO 3
MgO +CO 2 →MgCO 3
Calcium and magnesium are found in nature typically as calcium and magnesiumsilicates (such asforsterite andserpentinite) and not as binary oxides. For forsterite and serpentine the reactions are:
These reactions are slightly more favorable at low temperatures.[122] This process occurs naturally over geologic time frames and is responsible for much of the Earth's surfacelimestone. The reaction rate can be made faster however, by reacting at higher temperatures and/or pressures, although this method requires some additional energy. Alternatively, the mineral could be milled to increase its surface area, and exposed to water and constant abrasion to remove the inert silica as could be achieved naturally by dumping olivine in the high energy surf of beaches.[124]
WhenCO 2 is dissolved in water and injected into hot basaltic rocks underground it has been shown that theCO 2 reacts with the basalt to form solid carbonate minerals.[125] A test plant in Iceland started up in October 2017, extracting up to 50 tons of CO2 a year from the atmosphere and storing it underground in basaltic rock.[126][needs update]
Thepelagic food web, showing the central involvement ofmarine microorganisms in how the ocean imports carbon and then exports it back to the atmosphere and ocean floor
The ocean naturally sequesters carbon through different processes.[128] Thesolubility pump moves carbon dioxide from the atmosphere into the surface ocean where it reacts with water molecules to form carbonic acid. The solubility of carbon dioxide increases with decreasing water temperatures.Thermohaline circulation moves dissolved carbon dioxide to cooler waters where it is more soluble, increasing carbon concentrations in the ocean interior. Thebiological pump moves dissolved carbon dioxide from the surface ocean to the ocean's interior through the conversion of inorganic carbon to organic carbon by photosynthesis. Organic matter that survives respiration and remineralization can be transported through sinking particles and organism migration to the deep ocean.[citation needed]
The low temperatures, high pressure, and reduced oxygen levels in the deep sea slow downdecomposition processes, preventing the rapid release of carbon back into the atmosphere and acting as a long-term storage reservoir.[129]
Blue carbon is a concept withinclimate change mitigation that refers to "biologically driven carbon fluxes and storage in marine systems that are amenable to management".[130]: 2220 Most commonly, it refers to the role thattidal marshes,mangroves andseagrass meadows can play in carbon sequestration.[130]: 2220 These ecosystems can play an important role for climate change mitigation andecosystem-based adaptation. However, when blue carbon ecosystems are degraded or lost, they release carbon back to the atmosphere, thereby adding togreenhouse gas emissions.[130]: 2220
Seaweed grows in shallow and coastal areas, and captures significant amounts of carbon that can be transported to the deep ocean by oceanic mechanisms; seaweed reaching the deep ocean sequester carbon and prevent it from exchanging with the atmosphere over millennia.[131] Growing seaweed offshore with the purpose of sinking the seaweed in the depths of the sea to sequester carbon has been suggested.[132] In addition, seaweed grows very fast and can theoretically be harvested and processed to generatebiomethane, viaanaerobic digestion to generate electricity, viacogeneration/CHP or as a replacement fornatural gas. One study suggested that if seaweed farms covered 9% of the ocean they could produce enough biomethane to supply Earth's equivalent demand for fossil fuel energy, remove 53gigatonnes ofCO2 per year from the atmosphere and sustainably produce 200 kg per year of fish, per person, for 10 billion people.[133][obsolete source]Ideal species for such farming and conversion includeLaminaria digitata,Fucus serratus andSaccharina latissima.[134]
Bothmacroalgae andmicroalgae are being investigated as possible means of carbon sequestration.[135][136] Marinephytoplankton perform half of the global photosynthetic CO2 fixation (net global primary production of ~50 Pg C per year) and half of the oxygen production despite amounting to only ~1% of global plant biomass.[137]
Becausealgae lack the complexlignin associated withterrestrial plants, the carbon in algae is released into the atmosphere more rapidly than carbon captured on land.[135][138] Algae have been proposed as a short-term storage pool of carbon that can be used as afeedstock for the production of variousbiogenic fuels.[139]
Women working with seaweed
Large-scale seaweed farming could sequester significant amounts of carbon.[6] Wild seaweed will sequester large amount of carbon through dissolved particles of organic matter being transported to deep ocean seafloors where it will become buried and remain for long periods of time.[7] With respect to carbon farming, the potential growth of seaweed for carbon farming would see the harvested seaweed transported to the deep ocean for long-term burial.[7] Seaweed farming occurs mostly in the Asian Pacific coastal areas where it has been a rapidly increasing market.[7] The IPCCSpecial Report on the Ocean and Cryosphere in a Changing Climate recommends "further research attention" on seaweed farming as a mitigation tactic.[8]
Ocean fertilization or ocean nourishment is a type of technology forcarbon dioxide removal from the ocean based on the purposeful introduction of plantnutrients to the upperocean to increase marine food production and to removecarbon dioxide from the atmosphere.[140][141] Ocean nutrient fertilization, for exampleiron fertilization, could stimulate photosynthesis inphytoplankton. The phytoplankton would convert the ocean's dissolved carbon dioxide intocarbohydrate, some of which would sink into the deeper ocean before oxidizing. More than a dozen open-sea experiments confirmed that adding iron to the ocean increasesphotosynthesis in phytoplankton by up to 30 times.[142]
This is one of the more well-researchedcarbon dioxide removal (CDR) approaches, and supported by theClimate restoration proponents. However, there is uncertainty about this approach regarding the duration of the effective oceanic carbon sequestration. While surface ocean acidity may decrease as a result of nutrient fertilization, when the sinking organic matter remineralizes, deep ocean acidity could increase. A 2021 report on CDR indicates that there is medium-high confidence that the technique could be efficient and scalable at low cost, with medium environmental risks.[143] The risks of nutrient fertilization can be monitored. Peter Fiekowsky and Carole Douglis write "I consider iron fertilization an important item on our list of pottential climate restoration solutions. Given the fact that iron fertilization is a natural process that has taken place on a massive scale for millions of years, it is likely that most of the side effects are familiar ones that pose no major threat"[144]
A number of techniques, including fertilization by the micronutrientiron (called iron fertilization) or withnitrogen andphosphorus (both macronutrients), have been proposed. Some research in the early 2020s suggested that it could only permanently sequester a small amount of carbon.[145] More recent research publications sustain that iron fertilization shows promise. A NOAA special report rated iron fertilization as having "a moderate potential for cost, scalability and how long carbon might be stored compared to other marine sequestration ideas"[146]
Artificial upwelling or downwelling is an approach that would change the mixing layers of the ocean. Encouraging various ocean layers to mix can move nutrients and dissolved gases around.[147] Mixing may be achieved by placing large vertical pipes in the oceans to pump nutrient rich water to the surface, triggeringblooms of algae, which store carbon when they grow and export[clarification needed] carbon when they die.[147][148][149] This produces results somewhat similar to iron fertilization. One side-effect is a short-term rise inCO 2, which limits its attractiveness.[150]
Mixing layers involve transporting the denser and colderdeep ocean water to the surfacemixed layer. As theocean temperature decreases with depth, morecarbon dioxide and other compounds are able to dissolve in the deeper layers.[151] This can be induced by reversing theoceanic carbon cycle through the use of large vertical pipes serving as ocean pumps,[152] or a mixer array.[153] When the nutrient rich deep ocean water is moved to the surface,algae bloom occurs, resulting in a decrease in carbon dioxide due to carbon intake fromphytoplankton and otherphotosyntheticeukaryoticorganisms. The transfer of heat between the layers will also cause seawater from the mixed layer to sink and absorb more carbon dioxide. This method has not gained much traction as algae bloom harmsmarine ecosystems by blocking sunlight and releasing harmful toxins into the ocean.[154] The sudden increase in carbon dioxide on the surface level will also temporarily decrease thepH of the seawater, impairing the growth ofcoral reefs. The production ofcarbonic acid through the dissolution of carbon dioxide in seawater hindersmarine biogenic calcification and causes major disruptions to the oceanicfood chain.[155]
Carbon dioxide sequestration inbasalt involves the injecting ofCO 2 into deep-sea formations. TheCO 2 first mixes with seawater and then reacts with the basalt, both of which are alkaline-rich elements. This reaction results in the release ofCa2+ andMg2+ ions forming stable carbonate minerals.[156]
Underwater basalt offers a good alternative to other forms of oceanic carbon storage because it has a number of trapping measures to ensure added protection against leakage. These measures include "geochemical, sediment, gravitational andhydrate formation." BecauseCO 2 hydrate is denser thanCO 2 in seawater, the risk of leakage is minimal. Injecting theCO 2 at depths greater than 2,700 meters (8,900 ft) ensures that theCO 2 has a greater density than seawater, causing it to sink.[157]
This process is undergoing tests as part of theCarbFix project, resulting in 95% of the injected 250 tonnes of CO2 to solidify intocalcite in two years, using 25 tonnes of water per tonne of CO2.[158][159][needs update]
Similar tomineralization processes that take place within rocks, mineralization can also occur under the sea. The rate of dissolution of carbon dioxide from atmosphere to oceanic regions[clarification needed] is determined by the circulation period of the ocean and buffering ability ofsubducting surface water.[160] Researchers have demonstrated that the carbon dioxide marine storage at several kilometers depth could be viable for up to 500 years, but is dependent on injection site and conditions. Several studies have shown that although it may fix carbon dioxide effectively, carbon dioxide may be released back to the atmosphere over time. However, this is unlikely for at least a few more centuries. The neutralization ofCaCO3, or balancing the concentration of CaCO3 on the seafloor, land and in the ocean, can be measured on a timescale of thousands of years. More specifically, the predicted time is 1700 years for ocean and approximately 5000 to 6000 years for land.[161][162] Further, the dissolution time for CaCO3 can be improved by injecting near or downstream of the storage site.[163]
In addition tocarbon mineralization, another proposal is deep seasediment injection. It injects liquid carbon dioxide at least 3,000 m (9,800 ft) below the surface directly into ocean sediments to generate carbon dioxide hydrate. Two regions are defined for exploration: 1) the negative buoyancy zone (NBZ), which is the region between liquid carbon dioxide denser than surrounding water and where liquid carbon dioxide has neutral buoyancy, and 2) the hydrate formation zone (HFZ), which typically has low temperatures and high pressures. Several research models have shown that the optimal depth of injection requires consideration of intrinsic permeability and any changes in liquid carbon dioxide permeability for optimal storage. The formation of hydrates decreases liquid carbon dioxide permeability, and injection below HFZ is more energetically favored than within the HFZ. If the NBZ is a greater column of water than the HFZ, the injection should happen below the HFZ and directly to the NBZ.[164] In this case, liquid carbon dioxide will sink to the NBZ and be stored below the buoyancy and hydrate cap. Carbon dioxide leakage can occur if there is dissolution intopore fluid[clarification needed]or viamolecular diffusion. However, this occurs over thousands of years.[163][165][166]
Carbon dioxide formscarbonic acid when dissolved in water, soocean acidification is a significant consequence of elevated carbon dioxide levels, and limits the rate at which it can be absorbed into the ocean (thesolubility pump). A variety of differentbases have been suggested that could neutralize the acid and thus increaseCO 2 absorption.[167][168][169][170][171] For example, adding crushedlimestone to oceans enhances the absorption of carbon dioxide.[172] Another approach is to addsodium hydroxide to oceans which is produced byelectrolysis of salt water or brine, while eliminating the wastehydrochloric acid by reaction with a volcanic silicate rock such asenstatite, effectively increasing the rate of natural weathering of these rocks to restore ocean pH.[173][174][175][needs copy edit]
Single-step carbon sequestration and storage is a saline water-based mineralization technology extracting carbon dioxide from seawater and storing it in the form of solid minerals.[176]
It was once suggested that CO2 could be stored in the oceans by direct injection into the deep ocean and storing it there for some centuries. At the time, this proposal was called "ocean storage" but more precisely it was known as "direct deep-sea carbon dioxide injection". However, the interest in this avenue of carbon storage has much reduced since about 2001 because of concerns about the unknown impacts onmarine life[177]: 279 , high costs and concerns about its stability or permanence.[108] The "IPCC Special Report on Carbon Dioxide Capture and Storage" in 2005 did include this technology as an option.[177]: 279 However, theIPCC Fifth Assessment Report in 2014 no longer mentioned the term "ocean storage" in its report on climate change mitigation methods.[178] The most recentIPCC Sixth Assessment Report in 2022 also no longer includes any mention of "ocean storage" in its "Carbon Dioxide Removal taxonomy".[179]: 12–37
Cost of carbon sequestration (not including capture and transport) varies but is below US$10 per tonne in some cases where onshore storage is available.[180] For exampleCarbfix cost is around US$25 per tonne of CO2.[181] A 2020 report estimated sequestration in forests (so including capture) at US$35 for small quantities to US$280 per tonne for 10% of the total required to keep to 1.5 C warming.[182] But there is risk of forest fires releasing the carbon.[183]
^IPCC (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S. L.; et al. (eds.).Climate Change 2021: The Physical Science Basis(PDF). Contribution of Working Group I to theSixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (In Press).Archived(PDF) from the original on June 5, 2022. RetrievedJune 3, 2022.
^Bui, Mai; Adjiman, Claire S.; Bardow, André; Anthony, Edward J.; Boston, Andy; Brown, Solomon; Fennell, Paul S.; Fuss, Sabine; Galindo, Amparo; Hackett, Leigh A.; Hallett, Jason P.; Herzog, Howard J.; Jackson, George; Kemper, Jasmin; Krevor, Samuel (2018)."Carbon capture and storage (CCS): the way forward".Energy & Environmental Science.11 (5):1062–1176.doi:10.1039/C7EE02342A.hdl:10044/1/55714.ISSN1754-5692.Archived from the original on March 17, 2023. RetrievedFebruary 6, 2023.
^National Academies Of Sciences, Engineering (2019).Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. Washington, D.C.: National Academies of Sciences, Engineering, and Medicine. pp. 45–136.doi:10.17226/25259.ISBN978-0-309-48452-7.PMID31120708.S2CID134196575.
^Gorte, Ross W. (2009).Carbon Sequestration in Forests(PDF) (RL31432 ed.). Congressional Research Service.Archived(PDF) from the original on November 14, 2022. RetrievedJanuary 9, 2023.
^Ometto, J.P., K. Kalaba, G.Z. Anshari, N. Chacón, A. Farrell, S.A. Halim, H. Neufeldt, and R. Sukumar, 2022:CrossChapter Paper 7: Tropical Forests. In:Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 2369–2410, doi:10.1017/9781009325844.024.
^abUS Department of Commerce, National Oceanic and Atmospheric Administration."What is Blue Carbon?".oceanservice.noaa.gov.Archived from the original on April 22, 2021. RetrievedApril 28, 2021.
^Badiou, Pascal; McDougal, Rhonda; Pennock, Dan; Clark, Bob (June 1, 2011). "Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region".Wetlands Ecology and Management.19 (3):237–256.Bibcode:2011WetEM..19..237B.doi:10.1007/s11273-011-9214-6.ISSN1572-9834.S2CID30476076.
^abHarris, L. I., Richardson, K., Bona, K. A., Davidson, S. J., Finkelstein, S. A., Garneau, M., ... & Ray, J. C. (2022). The essential carbon service provided by northern peatlands. Frontiers in Ecology and the Environment, 20(4), 222-230.
^abPoeplau, Christopher; Don, Axel (February 1, 2015). "Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis".Agriculture, Ecosystems & Environment.200 (Supplement C):33–41.Bibcode:2015AgEE..200...33P.doi:10.1016/j.agee.2014.10.024.
^Guggenberger, G. (2005). Humification and mineralization in soils. In Microorganisms in soils: roles in genesis and functions (pp. 85-106). Berlin, Heidelberg: Springer Berlin Heidelberg.
^Horstman, Mark (September 23, 2007)."Agrichar – A solution to global warming?".ABC TV Science: Catalyst. Australian Broadcasting Corporation.Archived from the original on April 30, 2019. RetrievedJuly 8, 2008.
^CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration - Iglauer - 2015 - Water Resources Research - Wiley Online Library
^Aydin, Gokhan; Karakurt, Izzet; Aydiner, Kerim (September 1, 2010). "Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety".Energy Policy. Special Section on Carbon Emissions and Carbon Management in Cities with Regular Papers.38 (9):5072–5080.Bibcode:2010EnPol..38.5072A.doi:10.1016/j.enpol.2010.04.035.
^Smit, Berend; Reimer, Jeffrey A.; Oldenburg, Curtis M.; Bourg, Ian C. (2014).Introduction to Carbon Capture and Sequestration. London: Imperial College Press.ISBN978-1-78326-328-8.
^Bhaduri, Gaurav A.; Šiller, Lidija (2013). "Nickel nanoparticles catalyse reversible hydration of CO2 for mineralization carbon capture and storage".Catalysis Science & Technology.3 (5): 1234.doi:10.1039/C3CY20791A.
^Wilson, Siobhan A.; Dipple, Gregory M.; Power, Ian M.; Thom, James M.; Anderson, Robert G.; Raudsepp, Mati; Gabites, Janet E.; Southam, Gordon (2009). "CO2 Fixation within Mine Wastes of Ultramafic-Hosted Ore Deposits: Examples from the Clinton Creek and Cassiar Chrysotile Deposits, Canada".Economic Geology.104:95–112.doi:10.2113/gsecongeo.104.1.95.
^Power, Ian M.; Dipple, Gregory M.; Southam, Gordon (2010). "Bioleaching of Ultramafic Tailings byAcidithiobacillus spp. For CO2 Sequestration".Environmental Science & Technology.44 (1):456–62.Bibcode:2010EnST...44..456P.doi:10.1021/es900986n.PMID19950896.
^Power, Ian M.; Wilson, Siobhan A.; Small, Darcy P.; Dipple, Gregory M.; Wan, Wankei; Southam, Gordon (2011). "Microbially Mediated Mineral Carbonation: Roles of Phototrophy and Heterotrophy".Environmental Science & Technology.45 (20):9061–8.Bibcode:2011EnST...45.9061P.doi:10.1021/es201648g.PMID21879741.
^Heinze, C., Meyer, S., Goris, N., Anderson, L., Steinfeldt, R., Chang, N., ... & Bakker, D. C. (2015). The ocean carbon sink–impacts, vulnerabilities and challenges. Earth System Dynamics, 6(1), 327-358.
^Fiekowsky Peter, Douglis Carole (2022).Climate Restoration: the only future that will sustain the human reace. Rivertown Bools, Inc. p. 241.ISBN978-1-953943-10-1.
^Yogendra Kumar, Jitendra Sangwai, (2023) Environmentally Sustainable Large-Scale CO2 Sequestration through Hydrates in Offshore Basins: Ab Initio Comprehensive Analysis of Subsea Parameters and Economic Perspective, Energy & Fuels, doi=https://doi.org/10.1021/acs.energyfuels.3c00581
^Rau, Greg H.; Knauss, Kevin G.; Langer, William H.; Caldeira, Ken (August 2007). "Reducing energy-relatedCO 2 emissions using accelerated weathering of limestone".Energy.32 (8):1471–7.Bibcode:2007Ene....32.1471R.doi:10.1016/j.energy.2006.10.011.
^Kurt Zenz House; Christopher H. House; Daniel P. Schrag; Michael J. Aziz (2007). "Electrochemical Acceleration of Chemical Weathering as an Energetically Feasible Approach to Mitigating Anthropogenic Climate Change".Environ. Sci. Technol.41 (24):8464–8470.Bibcode:2007EnST...41.8464H.doi:10.1021/es0701816.PMID18200880.
^abIPCC, 2005:IPCC Special Report on Carbon Dioxide Capture and StorageArchived November 28, 2022, at theWayback Machine. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, 442 pp.