Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bifrustum

From Wikipedia, the free encyclopedia
Polyhedron made by joining two identical frusta at their bases
Family of bifrusta
Example: hexagonal bifrustum
Faces2n-gons
2ntrapezoids
Edges5n
Vertices3n
Symmetry groupDnh, [n,2], (*n22)
Surface arean(a+b)(ab2cotπn)2+h2  + nb22tanπn{\displaystyle {\begin{aligned}&n(a+b){\sqrt {\left({\tfrac {a-b}{2}}\cot {\tfrac {\pi }{n}}\right)^{2}+h^{2}}}\\[2pt]&\ \ +\ n{\frac {b^{2}}{2\tan {\frac {\pi }{n}}}}\end{aligned}}}
Volumena2+b2+ab6tanπnh{\displaystyle n{\frac {a^{2}+b^{2}+ab}{6\tan {\frac {\pi }{n}}}}h}
Dual polyhedronElongated bipyramids
Propertiesconvex

Ingeometry, ann-agonalbifrustum is apolyhedron composed of three parallel planes ofn-agons, with the middle plane largest and usually the top and bottom congruent.

It can be constructed as two congruentfrusta combined across a plane of symmetry, and also as abipyramid with the two polar vertices truncated.[1]

They areduals to the family ofelongated bipyramids.

Formulae

[edit]

For a regularn-gonal bifrustum with the equatorial polygon sidesa, bases sidesb and semi-height (half the distance between the planes of bases)h, thelateral surfaceareaAl, total areaA andvolumeV are:[2] and[3]Al=n(a+b)(ab2cotπn)2+h2A=Al+nb22tanπnV=na2+b2+ab6tanπnh{\displaystyle {\begin{aligned}A_{l}&=n(a+b){\sqrt {\left({\tfrac {a-b}{2}}\cot {\tfrac {\pi }{n}}\right)^{2}+h^{2}}}\\[4pt]A&=A_{l}+n{\frac {b^{2}}{2\tan {\frac {\pi }{n}}}}\\[4pt]V&=n{\frac {a^{2}+b^{2}+ab}{6\tan {\frac {\pi }{n}}}}h\end{aligned}}}Note that the volume V is twice the volume of afrusta.

Forms

[edit]

Three bifrusta areduals to threeJohnson solids,J14-16. In general, an-agonal bifrustum has2n trapezoids, 2n-agons, and is dual to theelongated dipyramids.

Triangular bifrustumSquare bifrustumPentagonal bifrustum
6 trapezoids, 2 triangles. Dual toelongated triangular bipyramid,J148 trapezoids, 2 squares. Dual toelongated square bipyramid,J1510 trapezoids, 2 pentagons. Dual toelongated pentagonal bipyramid,J16

References

[edit]
  1. ^"Octagonal Bifrustum".etc.usf.edu. Retrieved2022-06-16.
  2. ^"Regelmäßiges Bifrustum - Rechner".RECHNERonline (in German). Retrieved2022-06-30.
  3. ^"mathworld pyramidal frustum".
Convexpolyhedra
Platonic solids(regular)
Catalan solids
(duals of Archimedean)
Dihedral regular
Dihedral uniform
duals:
Dihedral others
Degenerate polyhedra are initalics.
Stub icon

Thispolyhedron-related article is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Bifrustum&oldid=1187835223"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp