Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Barnes G-function

From Wikipedia, the free encyclopedia
Function that is an extension of superfactorials to the complex numbers
Plot of the Barnes G function G(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the Barnes G aka double gamma function G(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
The Barnes G function along part of the real axis

Inmathematics, theBarnes G-functionG(z) is afunction that is an extension ofsuperfactorials to thecomplex numbers. It is related to thegamma function, theK-function and theGlaisher–Kinkelin constant, and was named aftermathematicianErnest William Barnes.[1] It can be written in terms of thedouble gamma function.

Formally, the BarnesG-function is defined in the followingWeierstrass product form:

G(1+z)=(2π)z/2exp(z+z2(1+γ)2)k=1{(1+zk)kexp(z22kz)}{\displaystyle G(1+z)=(2\pi )^{z/2}\exp \left(-{\frac {z+z^{2}(1+\gamma )}{2}}\right)\,\prod _{k=1}^{\infty }\left\{\left(1+{\frac {z}{k}}\right)^{k}\exp \left({\frac {z^{2}}{2k}}-z\right)\right\}}

whereγ{\displaystyle \,\gamma } is theEuler–Mascheroni constant,exp(x) =ex is the exponential function, and Π denotes multiplication (capital pi notation).

The integral representation, which may be deduced from the relation to thedouble gamma function, is

logG(1+z)=z2log(2π)+0dtt[1ezt4sinh2t2+z22etzt]{\displaystyle \log G(1+z)={\frac {z}{2}}\log(2\pi )+\int _{0}^{\infty }{\frac {dt}{t}}\left[{\frac {1-e^{-zt}}{4\sinh ^{2}{\frac {t}{2}}}}+{\frac {z^{2}}{2}}e^{-t}-{\frac {z}{t}}\right]}

As anentire function,G is of order two, and of infinite type. This can be deduced from the asymptotic expansion given below.

Functional equation and integer arguments

[edit]

The BarnesG-function satisfies thefunctional equation

G(z+1)=Γ(z)G(z){\displaystyle G(z+1)=\Gamma (z)\,G(z)}

with normalisationG(1) = 1. Note the similarity between the functional equation of the Barnes G-function and that of the Eulergamma function:

Γ(z+1)=zΓ(z).{\displaystyle \Gamma (z+1)=z\,\Gamma (z).}

The functional equation implies thatG takes the following values atinteger arguments:

G(n)={0if n=0,1,2,i=0n2i!if n=1,2,{\displaystyle G(n)={\begin{cases}0&{\text{if }}n=0,-1,-2,\dots \\\prod _{i=0}^{n-2}i!&{\text{if }}n=1,2,\dots \end{cases}}}

(in particular,G(0)=0,G(1)=1{\displaystyle \,G(0)=0,G(1)=1})and thus

G(n)=(Γ(n))n1K(n){\displaystyle G(n)={\frac {(\Gamma (n))^{n-1}}{K(n)}}}

whereΓ(x){\displaystyle \,\Gamma (x)} denotes thegamma function andK denotes theK-function. The functional equation uniquely defines the Barnes G-function if the convexity condition,

(x1)d3dx3log(G(x))0{\displaystyle (\forall x\geq 1)\,{\frac {\mathrm {d} ^{3}}{\mathrm {d} x^{3}}}\log(G(x))\geq 0}

is added.[2] Additionally, the Barnes G-function satisfies the duplication formula,[3]

G(x)G(x+12)2G(x+1)=e14A322x2+3x1112πx12G(2x){\displaystyle G(x)G\left(x+{\frac {1}{2}}\right)^{2}G(x+1)=e^{\frac {1}{4}}A^{-3}2^{-2x^{2}+3x-{\frac {11}{12}}}\pi ^{x-{\frac {1}{2}}}G\left(2x\right)},

whereA{\displaystyle A} is theGlaisher–Kinkelin constant.

Characterisation

[edit]

Similar to theBohr–Mollerup theorem for thegamma function, for a constantc>0{\displaystyle c>0}, we have forf(x)=cG(x){\displaystyle f(x)=cG(x)}[4]

f(x+1)=Γ(x)f(x){\displaystyle f(x+1)=\Gamma (x)f(x)}

and forx>0{\displaystyle x>0}

f(x+n)Γ(x)nn(x2)f(n){\displaystyle f(x+n)\sim \Gamma (x)^{n}n^{x \choose 2}f(n)}

asn{\displaystyle n\to \infty }.

Reflection formula

[edit]

Thedifference equation for the G-function, in conjunction with thefunctional equation for thegamma function, can be used to obtain the followingreflection formula for the Barnes G-function (originally proved byHermann Kinkelin):

logG(1z)=logG(1+z)zlog2π+0zπxcotπxdx.{\displaystyle \log G(1-z)=\log G(1+z)-z\log 2\pi +\int _{0}^{z}\pi x\cot \pi x\,dx.}

The log-tangent integral on the right-hand side can be evaluated in terms of theClausen function (of order 2), as is shown below:

2πlog(G(1z)G(1+z))=2πzlog(sinπzπ)+Cl2(2πz){\displaystyle 2\pi \log \left({\frac {G(1-z)}{G(1+z)}}\right)=2\pi z\log \left({\frac {\sin \pi z}{\pi }}\right)+\operatorname {Cl} _{2}(2\pi z)}

The proof of this result hinges on the following evaluation of the cotangent integral: introducing the notationLc(z){\displaystyle \operatorname {Lc} (z)} for the log-cotangent integral, and using the fact that(d/dx)log(sinπx)=πcotπx{\displaystyle \,(d/dx)\log(\sin \pi x)=\pi \cot \pi x}, an integration by parts gives

Lc(z)=0zπxcotπxdx=zlog(sinπz)0zlog(sinπx)dx=zlog(sinπz)0z[log(2sinπx)log2]dx=zlog(2sinπz)0zlog(2sinπx)dx.{\displaystyle {\begin{aligned}\operatorname {Lc} (z)&=\int _{0}^{z}\pi x\cot \pi x\,dx\\&=z\log(\sin \pi z)-\int _{0}^{z}\log(\sin \pi x)\,dx\\&=z\log(\sin \pi z)-\int _{0}^{z}{\Bigg [}\log(2\sin \pi x)-\log 2{\Bigg ]}\,dx\\&=z\log(2\sin \pi z)-\int _{0}^{z}\log(2\sin \pi x)\,dx.\end{aligned}}}

Performing the integral substitutiony=2πxdx=dy/(2π){\displaystyle \,y=2\pi x\Rightarrow dx=dy/(2\pi )} gives

zlog(2sinπz)12π02πzlog(2siny2)dy.{\displaystyle z\log(2\sin \pi z)-{\frac {1}{2\pi }}\int _{0}^{2\pi z}\log \left(2\sin {\frac {y}{2}}\right)\,dy.}

TheClausen function – of second order – has the integral representation

Cl2(θ)=0θlog|2sinx2|dx.{\displaystyle \operatorname {Cl} _{2}(\theta )=-\int _{0}^{\theta }\log {\Bigg |}2\sin {\frac {x}{2}}{\Bigg |}\,dx.}

However, within the interval0<θ<2π{\displaystyle \,0<\theta <2\pi }, theabsolute value sign within theintegrand can be omitted, since within the range the 'half-sine' function in the integral is strictly positive, and strictly non-zero. Comparing this definition with the result above for the logtangent integral, the following relation clearly holds:

Lc(z)=zlog(2sinπz)+12πCl2(2πz).{\displaystyle \operatorname {Lc} (z)=z\log(2\sin \pi z)+{\frac {1}{2\pi }}\operatorname {Cl} _{2}(2\pi z).}

Thus, after a slight rearrangement of terms, the proof is complete:

2πlog(G(1z)G(1+z))=2πzlog(sinπzπ)+Cl2(2πz).{\displaystyle 2\pi \log \left({\frac {G(1-z)}{G(1+z)}}\right)=2\pi z\log \left({\frac {\sin \pi z}{\pi }}\right)+\operatorname {Cl} _{2}(2\pi z)\,.\,\Box }

Using the relationG(1+z)=Γ(z)G(z){\displaystyle \,G(1+z)=\Gamma (z)\,G(z)} and dividing the reflection formula by a factor of2π{\displaystyle \,2\pi } gives the equivalent form:

log(G(1z)G(z))=zlog(sinπzπ)+logΓ(z)+12πCl2(2πz){\displaystyle \log \left({\frac {G(1-z)}{G(z)}}\right)=z\log \left({\frac {\sin \pi z}{\pi }}\right)+\log \Gamma (z)+{\frac {1}{2\pi }}\operatorname {Cl} _{2}(2\pi z)}

Adamchik (2003) has given an equivalent form of thereflection formula, but with a different proof.[5]

Replacingz with1/2 − z in the previous reflection formula gives, after some simplification, the equivalent formula shown below (involvingBernoulli polynomials):

log(G(12+z)G(12z))=logΓ(12z)+B1(z)log2π+12log2+π0zB1(x)tanπxdx{\displaystyle \log \left({\frac {G\left({\frac {1}{2}}+z\right)}{G\left({\frac {1}{2}}-z\right)}}\right)=\log \Gamma \left({\frac {1}{2}}-z\right)+B_{1}(z)\log 2\pi +{\frac {1}{2}}\log 2+\pi \int _{0}^{z}B_{1}(x)\tan \pi x\,dx}

Taylor series expansion

[edit]

ByTaylor's theorem, and considering the logarithmicderivatives of the Barnes function, the following series expansion can be obtained:

logG(1+z)=z2log2π(z+(1+γ)z22)+k=2(1)kζ(k)k+1zk+1.{\displaystyle \log G(1+z)={\frac {z}{2}}\log 2\pi -\left({\frac {z+(1+\gamma )z^{2}}{2}}\right)+\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}.}

It is valid for0<z<1{\displaystyle \,0<z<1}. Here,ζ(x){\displaystyle \,\zeta (x)} is theRiemann zeta function:

ζ(s)=n=11ns.{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}.}

Exponentiating both sides of the Taylor expansion gives:

G(1+z)=exp[z2log2π(z+(1+γ)z22)+k=2(1)kζ(k)k+1zk+1]=(2π)z/2exp[z+(1+γ)z22]exp[k=2(1)kζ(k)k+1zk+1].{\displaystyle {\begin{aligned}G(1+z)&=\exp \left[{\frac {z}{2}}\log 2\pi -\left({\frac {z+(1+\gamma )z^{2}}{2}}\right)+\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}\right]\\&=(2\pi )^{z/2}\exp \left[-{\frac {z+(1+\gamma )z^{2}}{2}}\right]\exp \left[\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}\right].\end{aligned}}}

Comparing this with theWeierstrass product form of the Barnes function gives the following relation:

exp[k=2(1)kζ(k)k+1zk+1]=k=1{(1+zk)kexp(z22kz)}{\displaystyle \exp \left[\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}\right]=\prod _{k=1}^{\infty }\left\{\left(1+{\frac {z}{k}}\right)^{k}\exp \left({\frac {z^{2}}{2k}}-z\right)\right\}}

Multiplication formula

[edit]

Like the gamma function, the G-function also has a multiplication formula:[6]

G(nz)=K(n)nn2z2/2nz(2π)n2n2zi=0n1j=0n1G(z+i+jn){\displaystyle G(nz)=K(n)n^{n^{2}z^{2}/2-nz}(2\pi )^{-{\frac {n^{2}-n}{2}}z}\prod _{i=0}^{n-1}\prod _{j=0}^{n-1}G\left(z+{\frac {i+j}{n}}\right)}

whereK(n){\displaystyle K(n)} is a constant given by:

K(n)=e(n21)ζ(1)n512(2π)(n1)/2=(Ae112)n21n512(2π)(n1)/2.{\displaystyle K(n)=e^{-(n^{2}-1)\zeta ^{\prime }(-1)}\cdot n^{\frac {5}{12}}\cdot (2\pi )^{(n-1)/2}\,=\,(Ae^{-{\frac {1}{12}}})^{n^{2}-1}\cdot n^{\frac {5}{12}}\cdot (2\pi )^{(n-1)/2}.}

Hereζ{\displaystyle \zeta ^{\prime }} is the derivative of theRiemann zeta function andA{\displaystyle A} is theGlaisher–Kinkelin constant.

Absolute value

[edit]

It holds true thatG(z¯)=G(z)¯{\displaystyle G({\overline {z}})={\overline {G(z)}}}, thus|G(z)|2=G(z)G(z¯){\displaystyle |G(z)|^{2}=G(z)G({\overline {z}})}. From this relation and by the above presented Weierstrass product form one can show that

|G(x+iy)|=|G(x)|exp(y21+γ2)1+y2x2k=1(1+y2(x+k)2)k+1exp(y2k).{\displaystyle |G(x+iy)|=|G(x)|\exp \left(y^{2}{\frac {1+\gamma }{2}}\right){\sqrt {1+{\frac {y^{2}}{x^{2}}}}}{\sqrt {\prod _{k=1}^{\infty }\left(1+{\frac {y^{2}}{(x+k)^{2}}}\right)^{k+1}\exp \left(-{\frac {y^{2}}{k}}\right)}}.}

This relation is valid for arbitraryxR{0,1,2,}{\displaystyle x\in \mathbb {R} \setminus \{0,-1,-2,\dots \}}, andyR{\displaystyle y\in \mathbb {R} }. Ifx=0{\displaystyle x=0}, then the below formula is valid instead:

|G(iy)|=yexp(y21+γ2)k=1(1+y2k2)k+1exp(y2k){\displaystyle |G(iy)|=y\exp \left(y^{2}{\frac {1+\gamma }{2}}\right){\sqrt {\prod _{k=1}^{\infty }\left(1+{\frac {y^{2}}{k^{2}}}\right)^{k+1}\exp \left(-{\frac {y^{2}}{k}}\right)}}}

for arbitrary realy.

Asymptotic expansion

[edit]

Thelogarithm ofG(z + 1) has the following asymptotic expansion, as established by Barnes:

logG(z+1)=z22logz3z24+z2log2π112logz+(112logA)+k=1NB2k+24k(k+1)z2k + O(1z2N+2).{\displaystyle {\begin{aligned}\log G(z+1)={}&{\frac {z^{2}}{2}}\log z-{\frac {3z^{2}}{4}}+{\frac {z}{2}}\log 2\pi -{\frac {1}{12}}\log z\\&{}+\left({\frac {1}{12}}-\log A\right)+\sum _{k=1}^{N}{\frac {B_{2k+2}}{4k\left(k+1\right)z^{2k}}}~+~O\left({\frac {1}{z^{2N+2}}}\right).\end{aligned}}}

Here theBk{\displaystyle B_{k}} are theBernoulli numbers andA{\displaystyle A} is theGlaisher–Kinkelin constant. (Note that somewhat confusingly at the time of Barnes[7] theBernoulli numberB2k{\displaystyle B_{2k}} would have been written as(1)k+1Bk{\displaystyle (-1)^{k+1}B_{k}}, but this convention is no longer current.) This expansion is valid forz{\displaystyle z} in any sector not containing the negative real axis with|z|{\displaystyle |z|} large.

Relation to the log-gamma integral

[edit]

The parametric log-gamma can be evaluated in terms of the Barnes G-function:[5]

0zlogΓ(x)dx=z(1z)2+z2log2π+zlogΓ(z)logG(1+z){\displaystyle \int _{0}^{z}\log \Gamma (x)\,dx={\frac {z(1-z)}{2}}+{\frac {z}{2}}\log 2\pi +z\log \Gamma (z)-\log G(1+z)}
A proof of the formula

The proof is somewhat indirect, and involves first considering the logarithmic difference of thegamma function and Barnes G-function:

zlogΓ(z)logG(1+z){\displaystyle z\log \Gamma (z)-\log G(1+z)}

where

1Γ(z)=zeγzk=1{(1+zk)ez/k}{\displaystyle {\frac {1}{\Gamma (z)}}=ze^{\gamma z}\prod _{k=1}^{\infty }\left\{\left(1+{\frac {z}{k}}\right)e^{-z/k}\right\}}

andγ{\displaystyle \,\gamma } is theEuler–Mascheroni constant.

Taking the logarithm of theWeierstrass product forms of the Barnes G-function and gamma function gives:

zlogΓ(z)logG(1+z)=zlog(1Γ(z))logG(1+z)=z[logz+γz+k=1{log(1+zk)zk}][z2log2πz2z22z2γ2+k=1{klog(1+zk)+z22kz}]{\displaystyle {\begin{aligned}&z\log \Gamma (z)-\log G(1+z)=-z\log \left({\frac {1}{\Gamma (z)}}\right)-\log G(1+z)\\[5pt]={}&{-z}\left[\log z+\gamma z+\sum _{k=1}^{\infty }{\Bigg \{}\log \left(1+{\frac {z}{k}}\right)-{\frac {z}{k}}{\Bigg \}}\right]\\[5pt]&{}-\left[{\frac {z}{2}}\log 2\pi -{\frac {z}{2}}-{\frac {z^{2}}{2}}-{\frac {z^{2}\gamma }{2}}+\sum _{k=1}^{\infty }{\Bigg \{}k\log \left(1+{\frac {z}{k}}\right)+{\frac {z^{2}}{2k}}-z{\Bigg \}}\right]\end{aligned}}}

A little simplification and re-ordering of terms gives the series expansion:

k=1{(k+z)log(1+zk)z22kz}=zlogzz2log2π+z2+z22z2γ2zlogΓ(z)+logG(1+z){\displaystyle {\begin{aligned}&\sum _{k=1}^{\infty }{\Bigg \{}(k+z)\log \left(1+{\frac {z}{k}}\right)-{\frac {z^{2}}{2k}}-z{\Bigg \}}\\[5pt]={}&{-z}\log z-{\frac {z}{2}}\log 2\pi +{\frac {z}{2}}+{\frac {z^{2}}{2}}-{\frac {z^{2}\gamma }{2}}-z\log \Gamma (z)+\log G(1+z)\end{aligned}}}

Finally, take the logarithm of theWeierstrass product form of thegamma function, and integrate over the interval[0,z]{\displaystyle \,[0,\,z]} to obtain:

0zlogΓ(x)dx=0zlog(1Γ(x))dx=(zlogzz)z2γ2k=1{(k+z)log(1+zk)z22kz}{\displaystyle {\begin{aligned}&\int _{0}^{z}\log \Gamma (x)\,dx=-\int _{0}^{z}\log \left({\frac {1}{\Gamma (x)}}\right)\,dx\\[5pt]={}&{-(z\log z-z)}-{\frac {z^{2}\gamma }{2}}-\sum _{k=1}^{\infty }{\Bigg \{}(k+z)\log \left(1+{\frac {z}{k}}\right)-{\frac {z^{2}}{2k}}-z{\Bigg \}}\end{aligned}}}

Equating the two evaluations completes the proof:

0zlogΓ(x)dx=z(1z)2+z2log2π+zlogΓ(z)logG(1+z){\displaystyle \int _{0}^{z}\log \Gamma (x)\,dx={\frac {z(1-z)}{2}}+{\frac {z}{2}}\log 2\pi +z\log \Gamma (z)-\log G(1+z)}

And sinceG(1+z)=Γ(z)G(z){\displaystyle \,G(1+z)=\Gamma (z)\,G(z)} then,

0zlogΓ(x)dx=z(1z)2+z2log2π(1z)logΓ(z)logG(z).{\displaystyle \int _{0}^{z}\log \Gamma (x)\,dx={\frac {z(1-z)}{2}}+{\frac {z}{2}}\log 2\pi -(1-z)\log \Gamma (z)-\log G(z)\,.}

References

[edit]
  1. ^E. W. Barnes, "The theory of the G-function",Quarterly Journ. Pure and Appl. Math.31 (1900), 264–314.
  2. ^M. F. Vignéras,L'équation fonctionelle de la fonction zêta de Selberg du groupe mudulaire SL(2,Z){\displaystyle (2,\mathbb {Z} )}, Astérisque61, 235–249 (1979).
  3. ^Park, Junesang (1996)."A duplication formula for the double gamma function $Gamma_2$".Bulletin of the Korean Mathematical Society.33 (2):289–294.
  4. ^Marichal, Jean Luc.A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions(PDF). Springer. p. 218.
  5. ^abAdamchik, Viktor S. (2003). "Contributions to the Theory of the Barnes function".arXiv:math/0308086.
  6. ^I. Vardi,Determinants of Laplacians and multiple gamma functions, SIAM J. Math. Anal.19, 493–507 (1988).
  7. ^E. T. Whittaker andG. N. Watson, "A Course of Modern Analysis", CUP.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Barnes_G-function&oldid=1287598704"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp