Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Arithmetic progression

From Wikipedia, the free encyclopedia
Sequence of equally spaced numbers
Proof without words of the arithmetic progression formulas using a rotated copy of the blocks.

Anarithmetic progression orarithmetic sequence is asequence ofnumbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that arithmetic progression. For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2.

If the initial term of an arithmetic progression isa1{\displaystyle a_{1}} and the common difference of successive members isd{\displaystyle d}, then then{\displaystyle n}-th term of the sequence (an{\displaystyle a_{n}}) is given by

an=a1+(n1)d.{\displaystyle a_{n}=a_{1}+(n-1)d.}

A finite portion of an arithmetic progression is called afinite arithmetic progression and sometimes just called an arithmetic progression. Thesum of a finite arithmetic progression is called anarithmetic series.

History

[edit]

According to an anecdote of uncertain reliability,[1] in primary schoolCarl Friedrich Gauss reinvented the formulan(n+1)2{\displaystyle {\tfrac {n(n+1)}{2}}} for summing the integers from 1 throughn{\displaystyle n}, for the casen=100{\displaystyle n=100}, by grouping the numbers from both ends of the sequence into pairs summing to 101 and multiplying by the number of pairs. Regardless of the truth of this story, Gauss was not the first to discover this formula. Similar rules were known in antiquity toArchimedes,Hypsicles andDiophantus;[2] in China toZhang Qiujian; in India toAryabhata,Brahmagupta andBhaskara II;[3] and in medieval Europe toAlcuin,[4]Dicuil,[5]Fibonacci,[6]Sacrobosco,[7] and anonymous commentators ofTalmud known asTosafists.[8] Some find it likely that its origin goes back to thePythagoreans in the 5th century BC.[9]

Sum

[edit]
2+5+8+11+14=40
14+11+8+5+2=40

16+16+16+16+16=80

Computation of the sum 2 + 5 + 8 + 11 + 14. When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers (2 + 14 = 16). Thus 16 × 5 = 80 is twice the sum.

Thesum of the members of a finite arithmetic progression is called anarithmetic series. For example, consider the sum:

2+5+8+11+14=40{\displaystyle 2+5+8+11+14=40}

This sum can be found quickly by taking the numbern of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2:

n(a1+an)2{\displaystyle {\frac {n(a_{1}+a_{n})}{2}}}

In the case above, this gives the equation:

2+5+8+11+14=5(2+14)2=5×162=40.{\displaystyle 2+5+8+11+14={\frac {5(2+14)}{2}}={\frac {5\times 16}{2}}=40.}

This formula works for any arithmetic progression of real numbers beginning witha1{\displaystyle a_{1}} and ending withan{\displaystyle a_{n}}. For example,

(32)+(12)+12=3(32+12)2=32.{\displaystyle \left(-{\frac {3}{2}}\right)+\left(-{\frac {1}{2}}\right)+{\frac {1}{2}}={\frac {3\left(-{\frac {3}{2}}+{\frac {1}{2}}\right)}{2}}=-{\frac {3}{2}}.}

Derivation

[edit]
Animated proof for the formula giving the sum of the first integers 1+2+...+n.

To derive the above formula, begin by expressing the arithmetic series in two different ways:

Sn=a+a2+a3++a(n1)+an{\displaystyle S_{n}=a+a_{2}+a_{3}+\dots +a_{(n-1)}+a_{n}}
Sn=a+(a+d)+(a+2d)++(a+(n2)d)+(a+(n1)d).{\displaystyle S_{n}=a+(a+d)+(a+2d)+\dots +(a+(n-2)d)+(a+(n-1)d).}

Rewriting the terms in reverse order:

Sn=(a+(n1)d)+(a+(n2)d)++(a+2d)+(a+d)+a.{\displaystyle S_{n}=(a+(n-1)d)+(a+(n-2)d)+\dots +(a+2d)+(a+d)+a.}

Adding the corresponding terms of both sides of the two equations and halving both sides:

Sn=n2[2a+(n1)d].{\displaystyle S_{n}={\frac {n}{2}}[2a+(n-1)d].}

This formula can be simplified as:

Sn=n2[a+a+(n1)d].=n2(a+an).=n2(initial term+last term).{\displaystyle {\begin{aligned}S_{n}&={\frac {n}{2}}[a+a+(n-1)d].\\&={\frac {n}{2}}(a+a_{n}).\\&={\frac {n}{2}}({\text{initial term}}+{\text{last term}}).\end{aligned}}}

Furthermore, the mean value of the series can be calculated via:Sn/n{\displaystyle S_{n}/n}:

a¯=a1+an2.{\displaystyle {\overline {a}}={\frac {a_{1}+a_{n}}{2}}.}

The formula is essentially the same as the formula for the mean of adiscrete uniform distribution, interpreting the arithmetic progression as a set of equally probable outcomes.

Product

[edit]

Theproduct of the members of a finite arithmetic progression with an initial elementa1, common differencesd, andn elements in total is determined in a closed expression

a1a2a3an=a1(a1+d)(a1+2d)...(a1+(n1)d)=k=0n1(a1+kd)=dnΓ(a1d+n)Γ(a1d){\displaystyle a_{1}a_{2}a_{3}\cdots a_{n}=a_{1}(a_{1}+d)(a_{1}+2d)...(a_{1}+(n-1)d)=\prod _{k=0}^{n-1}(a_{1}+kd)=d^{n}{\frac {\Gamma \left({\frac {a_{1}}{d}}+n\right)}{\Gamma \left({\frac {a_{1}}{d}}\right)}}}

whereΓ{\displaystyle \Gamma } denotes theGamma function. The formula is not valid whena1/d{\displaystyle a_{1}/d} is negative or zero.

This is a generalization of the facts that the product of the progression1×2××n{\displaystyle 1\times 2\times \cdots \times n} is given by thefactorialn!{\displaystyle n!} and that the product

m×(m+1)×(m+2)××(n2)×(n1)×n{\displaystyle m\times (m+1)\times (m+2)\times \cdots \times (n-2)\times (n-1)\times n}

forpositive integersm{\displaystyle m} andn{\displaystyle n} is given by

n!(m1)!.{\displaystyle {\frac {n!}{(m-1)!}}.}

Derivation

[edit]
a1a2a3an=k=0n1(a1+kd)=k=0n1d(a1d+k)=d(a1d)d(a1d+1)d(a1d+2)d(a1d+(n1))=dnk=0n1(a1d+k)=dn(a1d)n¯{\displaystyle {\begin{aligned}a_{1}a_{2}a_{3}\cdots a_{n}&=\prod _{k=0}^{n-1}(a_{1}+kd)\\&=\prod _{k=0}^{n-1}d\left({\frac {a_{1}}{d}}+k\right)=d\left({\frac {a_{1}}{d}}\right)d\left({\frac {a_{1}}{d}}+1\right)d\left({\frac {a_{1}}{d}}+2\right)\cdots d\left({\frac {a_{1}}{d}}+(n-1)\right)\\&=d^{n}\prod _{k=0}^{n-1}\left({\frac {a_{1}}{d}}+k\right)=d^{n}{\left({\frac {a_{1}}{d}}\right)}^{\overline {n}}\end{aligned}}}

wherexn¯{\displaystyle x^{\overline {n}}} denotes therising factorial.

By the recurrence formulaΓ(z+1)=zΓ(z){\displaystyle \Gamma (z+1)=z\Gamma (z)}, valid for acomplex numberz>0{\displaystyle z>0},

Γ(z+2)=(z+1)Γ(z+1)=(z+1)zΓ(z){\displaystyle \Gamma (z+2)=(z+1)\Gamma (z+1)=(z+1)z\Gamma (z)},
Γ(z+3)=(z+2)Γ(z+2)=(z+2)(z+1)zΓ(z){\displaystyle \Gamma (z+3)=(z+2)\Gamma (z+2)=(z+2)(z+1)z\Gamma (z)},

so that

Γ(z+m)Γ(z)=k=0m1(z+k){\displaystyle {\frac {\Gamma (z+m)}{\Gamma (z)}}=\prod _{k=0}^{m-1}(z+k)}

form{\displaystyle m} a positive integer andz{\displaystyle z} a positive complex number.

Thus, ifa1/d>0{\displaystyle a_{1}/d>0},

k=0n1(a1d+k)=Γ(a1d+n)Γ(a1d){\displaystyle \prod _{k=0}^{n-1}\left({\frac {a_{1}}{d}}+k\right)={\frac {\Gamma \left({\frac {a_{1}}{d}}+n\right)}{\Gamma \left({\frac {a_{1}}{d}}\right)}}},

and, finally,

a1a2a3an=dnk=0n1(a1d+k)=dnΓ(a1d+n)Γ(a1d){\displaystyle a_{1}a_{2}a_{3}\cdots a_{n}=d^{n}\prod _{k=0}^{n-1}\left({\frac {a_{1}}{d}}+k\right)=d^{n}{\frac {\Gamma \left({\frac {a_{1}}{d}}+n\right)}{\Gamma \left({\frac {a_{1}}{d}}\right)}}}

Examples

[edit]
Example 1

Taking the example3,8,13,18,23,28,{\displaystyle 3,8,13,18,23,28,\ldots }, the product of the terms of the arithmetic progression given byan=3+5(n1){\displaystyle a_{n}=3+5(n-1)} up to the 50th term is

P50=550Γ(3/5+50)Γ(3/5)3.78438×1098.{\displaystyle P_{50}=5^{50}\cdot {\frac {\Gamma \left(3/5+50\right)}{\Gamma \left(3/5\right)}}\approx 3.78438\times 10^{98}.}
Example 2

The product of the first 10 odd numbers(1,3,5,7,9,11,13,15,17,19){\displaystyle (1,3,5,7,9,11,13,15,17,19)} is given by

13519=k=09(1+2k)=210Γ(12+10)Γ(12){\displaystyle 1\cdot 3\cdot 5\cdots 19=\prod _{k=0}^{9}(1+2k)=2^{10}\cdot {\frac {\Gamma \left({\frac {1}{2}}+10\right)}{\Gamma \left({\frac {1}{2}}\right)}}} = 654,729,075

Standard deviation

[edit]

The standard deviation of any arithmetic progression is

σ=|d|(n1)(n+1)12{\displaystyle \sigma =|d|{\sqrt {\frac {(n-1)(n+1)}{12}}}}

wheren{\displaystyle n} is the number of terms in the progression andd{\displaystyle d} is the common difference between terms. The formula is essentially the same as the formula for the standard deviation of adiscrete uniform distribution, interpreting the arithmetic progression as a set of equally probable outcomes.

Intersections

[edit]

Theintersection of any two doubly infinite arithmetic progressions is either empty or another arithmetic progression, which can be found using theChinese remainder theorem. If each pair of progressions in a family of doubly infinite arithmetic progressions have a non-empty intersection, then there exists a number common to all of them; that is, infinite arithmetic progressions form aHelly family.[10] However, the intersection of infinitely many infinite arithmetic progressions might be a single number rather than itself being an infinite progression.

Amount of arithmetic subsets of lengthk of the set {1,...,n}

[edit]

Leta(n,k){\displaystyle a(n,k)} denote the number of arithmetic subsets of lengthk{\displaystyle k} one can make from the set{1,,n}{\displaystyle \{1,\cdots ,n\}} and letϕ(η,κ){\displaystyle \phi (\eta ,\kappa )} be defined as:

ϕ(η,κ)={0if κη([η(mod κ)]2)(κ[η(mod κ)])if κη{\displaystyle \phi (\eta ,\kappa )={\begin{cases}0&{\text{if }}\kappa \mid \eta \\\left(\left[\eta \;({\text{mod }}\kappa )\right]-2\right)\left(\kappa -\left[\eta \;({\text{mod }}\kappa )\right]\right)&{\text{if }}\kappa \not \mid \eta \\\end{cases}}}

Then:

a(n,k)=12(k1)(n2(k1)n+(k2)+ϕ(n+1,k1))=12(k1)((n1)(n(k2))+ϕ(n+1,k1)){\displaystyle {\begin{aligned}a(n,k)&={\frac {1}{2(k-1)}}\left(n^{2}-(k-1)n+(k-2)+\phi (n+1,k-1)\right)\\&={\frac {1}{2(k-1)}}\left((n-1)(n-(k-2))+\phi (n+1,k-1)\right)\end{aligned}}}

As an example, if(n,k)=(7,3){\textstyle (n,k)=(7,3)} one expectsa(7,3)=9{\textstyle a(7,3)=9} arithmetic subsets and, counting directly, one sees that there are 9; these are{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{1,3,5},{3,5,7},{2,4,6},{1,4,7}.{\textstyle \{1,2,3\},\{2,3,4\},\{3,4,5\},\{4,5,6\},\{5,6,7\},\{1,3,5\},\{3,5,7\},\{2,4,6\},\{1,4,7\}.}

See also

[edit]

References

[edit]
  1. ^Hayes, Brian (2006)."Gauss's Day of Reckoning".American Scientist.94 (3): 200.doi:10.1511/2006.59.200.Archived from the original on 12 January 2012. Retrieved16 October 2020.
  2. ^Tropfke, Johannes (1924).Analysis, analytische Geometrie. Walter de Gruyter. pp. 3–15.ISBN 978-3-11-108062-8.
  3. ^Tropfke, Johannes (1979).Arithmetik und Algebra. Walter de Gruyter. pp. 344–354.ISBN 978-3-11-004893-3.
  4. ^Problems to Sharpen the Young, John Hadley and David Singmaster,The Mathematical Gazette,76, #475 (March 1992), pp. 102–126.
  5. ^Ross, H.E. & Knott, B.I. (2019) Dicuil (9th century) on triangular and square numbers,British Journal for the History of Mathematics, 34:2, 79-94,https://doi.org/10.1080/26375451.2019.1598687
  6. ^Sigler, Laurence E. (trans.) (2002).Fibonacci's Liber Abaci. Springer-Verlag. pp. 259–260.ISBN 0-387-95419-8.
  7. ^Katz, Victor J. (edit.) (2016).Sourcebook in the Mathematics of Medieval Europe and North Africa. Princeton University Press. pp. 91, 257.ISBN 9780691156859.
  8. ^Stern, M. (1990). 74.23 A Mediaeval Derivation of the Sum of an Arithmetic Progression. The Mathematical Gazette, 74(468), 157-159. doi:10.2307/3619368
  9. ^Høyrup, J. The "Unknown Heritage": trace of a forgotten locus of mathematical sophistication. Arch. Hist. Exact Sci. 62, 613–654 (2008).https://doi.org/10.1007/s00407-008-0025-y
  10. ^Duchet, Pierre (1995), "Hypergraphs", in Graham, R. L.;Grötschel, M.; Lovász, L. (eds.),Handbook of combinatorics, Vol. 1, 2, Amsterdam: Elsevier, pp. 381–432,MR 1373663. See in particular Section 2.5, "Helly Property",pp. 393–394.

External links

[edit]
Integer sequences
Basic
Advanced(list)
Fibonacci spiral with square sizes up to 34.
Properties of sequences
Properties of series
Series
Convergence
Explicit series
Convergent
Divergent
Kinds of series
Hypergeometric series
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Arithmetic_progression&oldid=1279549205"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp