Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Absolutely convex set

From Wikipedia, the free encyclopedia
Convex and balanced set

Inmathematics, asubsetC of areal orcomplexvector space is said to beabsolutely convex ordisked if it isconvex andbalanced (some people use the term "circled" instead of "balanced"), in which case it is called adisk. Thedisked hull or theabsolute convex hull of a set is theintersection of all disks containing that set.

Definition

[edit]
The light gray area is the absolutely convex hull of the cross.

A subsetS{\displaystyle S} of a real or complex vector spaceX{\displaystyle X} is called adisk and is said to bedisked,absolutely convex, andconvex balanced if any of the following equivalent conditions is satisfied:

  1. S{\displaystyle S} is aconvex andbalanced set.
  2. for any scalarsa{\displaystyle a} andb,{\displaystyle b,} if|a|+|b|1{\displaystyle |a|+|b|\leq 1} thenaS+bSS.{\displaystyle aS+bS\subseteq S.}
  3. for all scalarsa,b,{\displaystyle a,b,} andc,{\displaystyle c,} if|a|+|b||c|,{\displaystyle |a|+|b|\leq |c|,} thenaS+bScS.{\displaystyle aS+bS\subseteq cS.}
  4. for any scalarsa1,,an{\displaystyle a_{1},\ldots ,a_{n}} andc,{\displaystyle c,} if|a1|++|an||c|{\displaystyle |a_{1}|+\cdots +|a_{n}|\leq |c|} thena1S++anScS.{\displaystyle a_{1}S+\cdots +a_{n}S\subseteq cS.}
  5. for any scalarsa1,,an,{\displaystyle a_{1},\ldots ,a_{n},} if|a1|++|an|1{\displaystyle |a_{1}|+\cdots +|a_{n}|\leq 1} thena1S++anSS.{\displaystyle a_{1}S+\cdots +a_{n}S\subseteq S.}

The smallestconvex (respectively,balanced) subset ofX{\displaystyle X} containing a given set is called theconvex hull (respectively, the balanced hull) of that set and is denoted bycoS{\displaystyle \operatorname {co} S} (respectively,balS{\displaystyle \operatorname {bal} S}).

Similarly, thedisked hull, theabsolute convex hull, and theconvex balanced hull of a setS{\displaystyle S} is defined to be the smallest disk (with respect to subsetinclusion) containingS.{\displaystyle S.}[1] The disked hull ofS{\displaystyle S} will be denoted bydiskS{\displaystyle \operatorname {disk} S} orcobalS{\displaystyle \operatorname {cobal} S} and it is equal to each of the following sets:

  1. co(balS),{\displaystyle \operatorname {co} (\operatorname {bal} S),} which is the convex hull of thebalanced hull ofS{\displaystyle S}; thus,cobalS=co(balS).{\displaystyle \operatorname {cobal} S=\operatorname {co} (\operatorname {bal} S).}
  2. the intersection of all disks containingS.{\displaystyle S.}
  3. {a1s1+ansn : nN,s1,,snS, and a1,,an are scalars satisfying |a1|++|an|1}.{\displaystyle \left\{a_{1}s_{1}+\cdots a_{n}s_{n}~:~n\in \mathbb {N} ,\,s_{1},\ldots ,s_{n}\in S,\,{\text{ and }}a_{1},\ldots ,a_{n}{\text{ are scalars satisfying }}|a_{1}|+\cdots +|a_{n}|\leq 1\right\}.}

Sufficient conditions

[edit]

The intersection of arbitrarily many absolutely convex sets is again absolutely convex; however,unions of absolutely convex sets need not be absolutely convex anymore.

IfD{\displaystyle D} is a disk inX,{\displaystyle X,} thenD{\displaystyle D} is absorbing inX{\displaystyle X} if and only ifspanD=X.{\displaystyle \operatorname {span} D=X.}[2]

Properties

[edit]
See also:Topological vector space § Properties

IfS{\displaystyle S} is anabsorbing disk in a vector spaceX{\displaystyle X} then there exists an absorbing diskE{\displaystyle E} inX{\displaystyle X} such thatE+ES.{\displaystyle E+E\subseteq S.}[3] IfD{\displaystyle D} is a disk andr{\displaystyle r} ands{\displaystyle s} are scalars thensD=|s|D{\displaystyle sD=|s|D} and(rD)(sD)=(min{|r|,|s|})D.{\displaystyle (rD)\cap (sD)=(\min _{}\{|r|,|s|\})D.}

The absolutely convex hull of abounded set in alocally convex topological vector space is again bounded.

IfD{\displaystyle D} is a bounded disk in a TVSX{\displaystyle X} and ifx=(xi)i=1{\displaystyle x_{\bullet }=\left(x_{i}\right)_{i=1}^{\infty }} is asequence inD,{\displaystyle D,} then the partial sumss=(sn)n=1{\displaystyle s_{\bullet }=\left(s_{n}\right)_{n=1}^{\infty }} areCauchy, where for alln,{\displaystyle n,}sn:=i=1n2ixi.{\displaystyle s_{n}:=\sum _{i=1}^{n}2^{-i}x_{i}.}[4] In particular, if in additionD{\displaystyle D} is asequentially complete subset ofX,{\displaystyle X,} then this seriess{\displaystyle s_{\bullet }} converges inX{\displaystyle X} to some point ofD.{\displaystyle D.}

The convex balanced hull ofS{\displaystyle S} contains both the convex hull ofS{\displaystyle S} and the balanced hull ofS.{\displaystyle S.} Furthermore, it contains the balanced hull of the convex hull ofS;{\displaystyle S;} thusbal(coS)  cobalS = co(balS),{\displaystyle \operatorname {bal} (\operatorname {co} S)~\subseteq ~\operatorname {cobal} S~=~\operatorname {co} (\operatorname {bal} S),}where the example below shows that this inclusion might be strict. However, for any subsetsS,TX,{\displaystyle S,T\subseteq X,} ifST{\displaystyle S\subseteq T} thencobalScobalT{\displaystyle \operatorname {cobal} S\subseteq \operatorname {cobal} T} which impliescobal(coS)=cobalS=cobal(balS).{\displaystyle \operatorname {cobal} (\operatorname {co} S)=\operatorname {cobal} S=\operatorname {cobal} (\operatorname {bal} S).}

Examples

[edit]

AlthoughcobalS=co(balS),{\displaystyle \operatorname {cobal} S=\operatorname {co} (\operatorname {bal} S),} the convex balanced hull ofS{\displaystyle S} isnot necessarily equal to the balanced hull of the convex hull ofS.{\displaystyle S.}[1] For an example wherecobalSbal(coS){\displaystyle \operatorname {cobal} S\neq \operatorname {bal} (\operatorname {co} S)} letX{\displaystyle X} be the real vector spaceR2{\displaystyle \mathbb {R} ^{2}} and letS:={(1,1),(1,1)}.{\displaystyle S:=\{(-1,1),(1,1)\}.} Thenbal(coS){\displaystyle \operatorname {bal} (\operatorname {co} S)} is a strict subset ofcobalS{\displaystyle \operatorname {cobal} S} that is not even convex; in particular, this example also shows that the balanced hull of a convex set isnot necessarily convex. The setcobalS{\displaystyle \operatorname {cobal} S} is equal to the closed and filled square inX{\displaystyle X} with vertices(1,1),(1,1),(1,1),{\displaystyle (-1,1),(1,1),(-1,-1),} and(1,1){\displaystyle (1,-1)} (this is because the balanced setcobalS{\displaystyle \operatorname {cobal} S} must contain bothS{\displaystyle S} andS={(1,1),(1,1)},{\displaystyle -S=\{(-1,-1),(1,-1)\},} where sincecobalS{\displaystyle \operatorname {cobal} S} is also convex, it must consequently contain the solid squareco((S)S),{\displaystyle \operatorname {co} ((-S)\cup S),} which for this particular example happens to also be balanced so thatcobalS=co((S)S){\displaystyle \operatorname {cobal} S=\operatorname {co} ((-S)\cup S)}). However,co(S){\displaystyle \operatorname {co} (S)} is equal to the horizontal closed line segment between the two points inS{\displaystyle S} so thatbal(coS){\displaystyle \operatorname {bal} (\operatorname {co} S)} is instead a closed "hour glass shaped" subset that intersects thex{\displaystyle x}-axis at exactly the origin and is the union of two closed and filledisosceles triangles: one whose vertices are the origin together withS{\displaystyle S} and the other triangle whose vertices are the origin together withS={(1,1),(1,1)}.{\displaystyle -S=\{(-1,-1),(1,-1)\}.} This non-convex filled "hour-glass"bal(coS){\displaystyle \operatorname {bal} (\operatorname {co} S)} is a proper subset of the filled squarecobalS=co(balS).{\displaystyle \operatorname {cobal} S=\operatorname {co} (\operatorname {bal} S).}

Generalizations

[edit]

Given a fixed real number0<p1,{\displaystyle 0<p\leq 1,} ap{\displaystyle p}-convex set is any subsetC{\displaystyle C} of a vector spaceX{\displaystyle X} with the property thatrc+sdC{\displaystyle rc+sd\in C} wheneverc,dC{\displaystyle c,d\in C} andr,s0{\displaystyle r,s\geq 0} are non-negative scalars satisfyingrp+sp=1.{\displaystyle r^{p}+s^{p}=1.} It is called anabsolutelyp{\displaystyle p}-convex set or ap{\displaystyle p}-disk ifrc+sdC{\displaystyle rc+sd\in C} wheneverc,dC{\displaystyle c,d\in C} andr,s{\displaystyle r,s} are scalars satisfying|r|p+|s|p1.{\displaystyle |r|^{p}+|s|^{p}\leq 1.}[5]

Ap{\displaystyle p}-seminorm[6] is any non-negative functionq:XR{\displaystyle q:X\to \mathbb {R} } that satisfies the following conditions:

  1. Subadditivity/Triangle inequality:q(x+y)q(x)+q(y){\displaystyle q(x+y)\leq q(x)+q(y)} for allx,yX.{\displaystyle x,y\in X.}
  2. Absolute homogeneity of degreep{\displaystyle p}:q(sx)=|s|pq(x){\displaystyle q(sx)=|s|^{p}q(x)} for allxX{\displaystyle x\in X} and all scalarss.{\displaystyle s.}

This generalizes the definition ofseminorms since a map is a seminorm if and only if it is a1{\displaystyle 1}-seminorm (usingp:=1{\displaystyle p:=1}). There existp{\displaystyle p}-seminorms that are notseminorms. For example, whenever0<p<1{\displaystyle 0<p<1} then the mapq(f)=R|f(t)|pdt{\displaystyle q(f)=\int _{\mathbb {R} }|f(t)|^{p}dt} used to define theLp spaceLp(R){\displaystyle L_{p}(\mathbb {R} )} is ap{\displaystyle p}-seminorm but not a seminorm.[6]

Given0<p1,{\displaystyle 0<p\leq 1,} atopological vector space isp{\displaystyle p}-seminormable (meaning that its topology is induced by somep{\displaystyle p}-seminorm) if and only if it has aboundedp{\displaystyle p}-convex neighborhood of the origin.[5]

See also

[edit]
The WikibookAlgebra has a page on the topic of:Vector spaces

References

[edit]
  1. ^abTrèves 2006, p. 68.
  2. ^Narici & Beckenstein 2011, pp. 67–113.
  3. ^Narici & Beckenstein 2011, pp. 149–153.
  4. ^Narici & Beckenstein 2011, p. 471.
  5. ^abNarici & Beckenstein 2011, p. 174.
  6. ^abNarici & Beckenstein 2011, p. 86.

Bibliography

[edit]
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Basic concepts
Topics (list)
Maps
Mainresults (list)
Sets
Series
Duality
Applications and related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Absolutely_convex_set&oldid=1242712985"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp