Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

800 (number)

From Wikipedia, the free encyclopedia
(Redirected from802 (number))
"Eight hundred" redirects here. For the film, seeThe Eight Hundred. For the year, see800. For other uses, see800 (disambiguation).
Natural number
← 799800 801 →
Cardinaleight hundred
Ordinal800th
(eight hundredth)
Factorization25 × 52
Divisors8001
Greek numeralΩ´
Roman numeralDCCC,dccc
Binary11001000002
Ternary10021223
Senary34126
Octal14408
Duodecimal56812
Hexadecimal32016
ArmenianՊ
Hebrewת"ת / ף
Babylonian cuneiform𒌋𒐗⟪
Egyptian hieroglyph𓍩

800 (eight hundred) is thenatural number following799 and preceding801.

It is the sum of four consecutive primes (193 + 197 + 199 + 211). It is aHarshad number, anAchilles number and the area of asquare with diagonal 40.[1]

Integers from 801 to 899

[edit]

800s

[edit]
Main article:801 (number)

810s

[edit]
"811 (number)" redirects here. For the phone number, see8-1-1. For other topics, see811 (disambiguation).

820s

[edit]
  • 820 = 22 × 5 × 41, 40thtriangular number, smallest triangular number that starts with the digit 8,[22] Harshad number,happy number, repdigit (1111) in base 9
  • 821 = prime number,twin prime, Chen prime, Eisenstein prime with no imaginary part, lazy caterer number (sequenceA000124 in theOEIS),prime quadruplet with 823, 827, 829
  • 822 = 2 × 3 × 137, sum of twelve consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97), sphenic number, member of theMian–Chowla sequence[23]
  • 823 = prime number,twin prime,lucky prime, the Mertens function of 823 returns 0, prime quadruplet with 821, 827, 829
  • 824 = 23 × 103,refactorable number, sum of ten consecutive primes (61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103), the Mertens function of 824 returns 0, nontotient
  • 825 = 3 × 52 × 11,Smith number,[24] the Mertens function of 825 returns 0, Harshad number
  • 826 = 2 × 7 × 59, sphenic number, number of partitions of 29 into parts each of which is used a different number of times[25]
  • 827 = prime number,twin prime, part of prime quadruplet with {821, 823, 829}, sum of seven consecutive primes (103 + 107 + 109 + 113 + 127 + 131 + 137), Chen prime, Eisenstein prime with no imaginary part, strictly non-palindromic number[26]
  • 828 = 22 × 32 × 23, Harshad number, triangular matchstick number[27]
  • 829 = prime number,twin prime, part of prime quadruplet with {827, 823, 821}, sum of three consecutive primes (271 + 277 + 281), Chen prime,centered triangular number

830s

[edit]
  • 830 = 2 × 5 × 83, sphenic number, sum of four consecutive primes (197 + 199 + 211 + 223), nontotient, totient sum for first 52 integers
  • 831 = 3 × 277, number of partitions of 32 into at most 5 parts[28]
  • 832 = 26 × 13, Harshad number, member of the sequence Horadam(0, 1, 4, 2)[29]
  • 833 = 72 × 17,octagonal number (sequenceA000567 in theOEIS), acentered octahedral number[30]
  • 834 = 2 × 3 × 139,cake number, sphenic number, sum of six consecutive primes (127 + 131 + 137 + 139 + 149 + 151), nontotient
  • 835 = 5 × 167,Motzkin number[31]
Main article:836 (number)
  • 836 = 22 × 11 × 19,weird number
  • 837 = 33 × 31, the 36th generalized heptagonal number[32]
  • 838 = 2 × 419, palindromic number, number of distinct products ijk with 1 <= i<j<k <= 23[33]
  • 839 = prime number,safe prime,[34] sum of five consecutive primes (157 + 163 + 167 + 173 + 179), Chen prime, Eisenstein prime with no imaginary part,highly cototient number[35]

840s

[edit]
Main article:840 (number)
  • 840 = 23 × 3 × 5 × 7,highly composite number,[36] smallest number divisible by the numbers 1 to 8 (lowest common multiple of 1 to 8), sparsely totient number,[37] Harshad number in base 2 through base 10,idoneal number, balanced number,[38] sum of a twin prime (419 + 421). With 32 distinct divisors, it is the number below1000 with the largest amount of divisors.
  • 841 = 292 = 202 + 212, sum of three consecutive primes (277 + 281 + 283), sum of nine consecutive primes (73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109),centered square number,[39]centered heptagonal number,[40]centered octagonal number[41]
  • 842 = 2 × 421, nontotient, 842!! - 1 is prime,[42] number of series-reduced trees with 18 nodes[43]
  • 843 = 3 × 281,Lucas number[44]
  • 844 = 22 × 211, nontotient, smallest 5 consecutive integers which are not squarefree are: 844 = 22 × 211, 845 = 5 × 132, 846 = 2 × 32 × 47, 847 = 7 × 112 and 848 = 24 × 53[45]
  • 845 = 5 × 132, concentric pentagonal number,[46] number of emergent parts in all partitions of 22[47]
  • 846 = 2 × 32 × 47, sum of eight consecutive primes (89 + 97 + 101 + 103 + 107 + 109 + 113 + 127), nontotient, Harshad number
  • 847 = 7 × 112,happy number, number of partitions of 29 that do not contain 1 as a part[48]
  • 848 = 24 × 53,untouchable number
  • 849 = 3 × 283, the Mertens function of 849 returns 0,Blum integer

850s

[edit]

860s

[edit]
  • 860 = 22 × 5 × 43, sum of four consecutive primes (199 + 211 + 223 + 227), Hoax number[59]
  • 861 = 3 × 7 × 41, sphenic number, 41sttriangular number,[22]hexagonal number,[60] Smith number[24]
  • 862 = 2 × 431, lazy caterer number (sequenceA000124 in theOEIS)
  • 863 = prime number, safe prime,[34] sum of five consecutive primes (163 + 167 + 173 + 179 + 181), sum of seven consecutive primes (107 + 109 + 113 + 127 + 131 + 137 + 139), Chen prime, Eisenstein prime with no imaginary part, index of prime Lucas number[61]
  • 864 = 25 × 33,Achilles number, sum of a twin prime (431 + 433), sum of six consecutive primes (131 + 137 + 139 + 149 + 151 + 157), Harshad number
  • 865 = 5 × 173
  • 866 = 2 × 433, nontotient, number of one-sidednoniamonds,[62]number of cubes of edge length 1 required to make a hollow cube of edge length 13
  • 867 = 3 × 172, number of 5-chromatic simple graphs on 8 nodes[63]
  • 868 = 22 × 7 × 31 =J3(10),[64] nontotient
  • 869 = 11 × 79, the Mertens function of 869 returns 0

870s

[edit]
  • 870 = 2 × 3 × 5 × 29, sum of ten consecutive primes (67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107), pronic number,[15] nontotient, sparsely totient number,[37] Harshad number
  • 871 = 13 × 67, thirteenthtridecagonal number
  • 872 = 23 × 109,refactorable number, nontotient, 872! + 1 isprime
  • 873 = 32 × 97, sum of the first six factorials from 1
  • 874 = 2 × 19 × 23,sphenic number, sum of the first twenty-three primes, sum of the first seven factorials from 0, nontotient, Harshad number,happy number
  • 875 = 53 × 7, unique expression as difference of positive cubes:[65] 103 – 53
  • 876 = 22 × 3 × 73, generalized pentagonal number[66]
  • 877 = prime number,Bell number,[67] Chen prime, the Mertens function of 877 returns 0, strictly non-palindromic number,[26]prime index prime
  • 878 = 2 × 439, nontotient, number of Pythagorean triples with hypotenuse < 1000.[68]
  • 879 = 3 × 293, number ofregular hypergraphs spanning 4 vertices,[69] candidateLychrel seed number

880s

[edit]
Main article:880 (number)
Main article:881 (number)
  • 881 = prime number,twin prime, sum of nine consecutive primes (79 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), Chen prime, Eisenstein prime with no imaginary part,happy number
  • 882 = 2 × 32 × 72 =(95)2{\displaystyle {\binom {9}{5}}_{2}} atrinomial coefficient,[71] Harshad number, totient sum for first 53 integers, area of a square with diagonal 42[1]
  • 883 = prime number,twin prime, lucky prime, sum of three consecutive primes (283 + 293 + 307), sum of eleven consecutive primes (59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103), the Mertens function of 883 returns 0
  • 884 = 22 × 13 × 17, the Mertens function of 884 returns 0, number of points on surface of tetrahedron with sidelength 21[72]
  • 885 = 3 × 5 × 59,sphenic number, number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of 7.[73]
  • 886 = 2 × 443, the Mertens function of 886 returns 0
    • country calling code for Taiwan
  • 887 = prime number followed by primalgap of 20, safe prime,[34] Chen prime, Eisenstein prime with no imaginary part
Main article:888 (number)
  • 888 = 23 × 3 × 37, sum of eight consecutive primes (97 + 101 + 103 + 107 + 109 + 113 + 127 + 131), Harshad number,strobogrammatic number,[11]happy number, 888!! - 1 is prime[74]
  • 889 = 7 × 127, the Mertens function of 889 returns 0

890s

[edit]
  • 890 = 2 × 5 × 89 = 192 + 232 (sum of squares of two successive primes),[75] sphenic number, sum of four consecutive primes (211 + 223 + 227 + 229), nontotient
  • 891 = 34 × 11, sum of five consecutive primes (167 + 173 + 179 + 181 + 191),octahedral number
  • 892 = 22 × 223, nontotient, number of regions formed by drawing the line segments connecting any two perimeter points of a 6 times 2 grid of squares likethis (sequenceA331452 in theOEIS).
  • 893 = 19 × 47, the Mertens function of 893 returns 0
    • Considered an unlucky number inJapan, because its digits read sequentially are the literal translation ofyakuza.
  • 894 = 2 × 3 × 149, sphenic number, nontotient
  • 895 = 5 × 179, Smith number,[24]Woodall number,[76] the Mertens function of 895 returns 0
  • 896 = 27 × 7,refactorable number, sum of six consecutive primes (137 + 139 + 149 + 151 + 157 + 163), the Mertens function of 896 returns 0
  • 897 = 3 × 13 × 23, sphenic number, Cullen number (sequenceA002064 in theOEIS)
  • 898 = 2 × 449, the Mertens function of 898 returns 0, nontotient
  • 899 = 29 × 31 (atwin prime product),[77]happy number, smallest number with digit sum 26,[78]number of partitions of 51 into prime parts

References

[edit]
  1. ^abSloane, N. J. A. (ed.)."Sequence A001105 (a(n) = 2*n^2)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^(sequenceA229093 in theOEIS)
  3. ^(sequenceA005893 in theOEIS)
  4. ^Sloane, N. J. A. (ed.)."Sequence A003107 (Number of partitions of n into Fibonacci parts (with a single type of 1))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-25.
  5. ^Sloane, N. J. A. (ed.)."Sequence A174457 (Infinitely refactorable numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-10-16.
  6. ^"Richmond is getting a new area code. Not everyone is thrilled: 'I'll be 804 forever'".WTVR-TV. Retrieved2025-03-16.
  7. ^Karri Peifer."The 804 is running out of numbers".AXIOS Richmond. Retrieved2025-03-16.
  8. ^Sloane, N. J. A. (ed.)."Sequence A002095 (Number of partitions of n into nonprime parts)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-25.
  9. ^Sloane, N. J. A. (ed.)."Sequence A002088 (Sum of totient function: a(n) = Sum_{k=1..n} phi(k), cf. A000010)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-25.
  10. ^Sloane, N. J. A. (ed.)."Sequence A024816 (Antisigma(n): Sum of the numbers less than n that do not divide n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-25.
  11. ^abcSloane, N. J. A. (ed.)."Sequence A000787 (Strobogrammatic numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  12. ^Sloane, N. J. A. (ed.)."Sequence A005384 (Sophie Germain primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  13. ^Sloane, N. J. A. (ed.)."Sequence A154638 (a(n) is the number of distinct reduced words of length n in the Coxeter group of "Apollonian reflections" in three dimensions)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-25.
  14. ^Sloane, N. J. A. (ed.)."Sequence A065577 (Number of Goldbach partitions of 10^n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-08-31.
  15. ^abSloane, N. J. A. (ed.)."Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  16. ^Sloane, N. J. A. (ed.)."Sequence A020492 (Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^Sloane, N. J. A. (ed.)."Sequence A049312 (Number of graphs with a distinguished bipartite block, by number of vertices)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-25.
  18. ^Sloane, N. J. A. (ed.)."Sequence A000292 (Tetrahedral numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  19. ^Sloane, N. J. A. (ed.)."Sequence A000931 (Padovan sequence)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  20. ^Sloane, N. J. A. (ed.)."Sequence A003215 (Hex (or centered hexagonal) numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  21. ^Sloane, N. J. A. (ed.)."Sequence A000330 (Square pyramidal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  22. ^abSloane, N. J. A. (ed.)."Sequence A000217 (Triangular numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  23. ^Sloane, N. J. A. (ed.)."Sequence A005282 (Mian-Chowla sequence)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  24. ^abcdSloane, N. J. A. (ed.)."Sequence A006753 (Smith numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  25. ^Sloane, N. J. A. (ed.)."Sequence A098859 (Number of partitions of n into parts each of which is used a different number of times)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-25.
  26. ^abSloane, N. J. A. (ed.)."Sequence A016038 (Strictly non-palindromic numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  27. ^(sequenceA045943 in theOEIS)
  28. ^Sloane, N. J. A. (ed.)."Sequence A001401 (Number of partitions of n into at most 5 parts)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-25.
  29. ^(sequenceA085449 in theOEIS)
  30. ^Sloane, N. J. A. (ed.)."Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-06-02.
  31. ^Sloane, N. J. A. (ed.)."Sequence A001006 (Motzkin numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  32. ^Sloane, N. J. A. (ed.)."Sequence A085787 (Generalized heptagonal numbers: m*(5*m – 3)/2, m = 0, +-1, +-2 +-3, ...)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-30.
  33. ^Sloane, N. J. A. (ed.)."Sequence A027430 (Number of distinct products ijk with 1 <= i<j<k <= n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  34. ^abcSloane, N. J. A. (ed.)."Sequence A005385 (Safe primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  35. ^Sloane, N. J. A. (ed.)."Sequence A100827 (Highly cototient numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  36. ^Sloane, N. J. A. (ed.)."Sequence A002182 (Highly composite numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  37. ^abSloane, N. J. A. (ed.)."Sequence A036913 (Sparsely totient numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  38. ^Sloane, N. J. A. (ed.)."Sequence A020492 (Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  39. ^Sloane, N. J. A. (ed.)."Sequence A001844 (Centered square numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  40. ^Sloane, N. J. A. (ed.)."Sequence A069099 (Centered heptagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  41. ^Sloane, N. J. A. (ed.)."Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  42. ^Sloane, N. J. A. (ed.)."Sequence A007749 (Numbers k such that k!! - 1 is prime)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  43. ^Sloane, N. J. A. (ed.)."Sequence A000014 (Number of series-reduced trees with n nodes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  44. ^Sloane, N. J. A. (ed.)."Sequence A000032 (Lucas numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  45. ^Sloane, N. J. A. (ed.)."Sequence A045882 (Smallest term of first run of (at least) n consecutive integers which are not squarefree)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  46. ^Sloane, N. J. A. (ed.)."Sequence A032527 (Concentric pentagonal numbers: floor( 5*n^2 / 4 ))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  47. ^Sloane, N. J. A. (ed.)."Sequence A182699 (Number of emergent parts in all partitions of n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  48. ^Sloane, N. J. A. (ed.)."Sequence A002865 (Number of partitions of n that do not contain 1 as a part)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  49. ^Sloane, N. J. A. (ed.)."Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  50. ^Sloane, N. J. A. (ed.)."Sequence A000326 (Pentagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  51. ^Sloane, N. J. A. (ed.)."Sequence A001608 (Perrin sequence)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  52. ^Sloane, N. J. A. (ed.)."Sequence A002995 (Number of unlabeled planar trees (also called plane trees) with n nodes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  53. ^Sloane, N. J. A. (ed.)."Sequence A001107 (10-gonal (or decagonal) numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  54. ^Sloane, N. J. A. (ed.)."Sequence A005898 (Centered cube numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  55. ^Sloane, N. J. A. (ed.)."Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  56. ^Sloane, N. J. A. (ed.)."Sequence A005891 (Centered pentagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  57. ^Sloane, N. J. A. (ed.)."Sequence A007850 (Giuga numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  58. ^Sloane, N. J. A. (ed.)."Sequence A000219 (Number of planar partitions (or plane partitions) of n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  59. ^Sloane, N. J. A. (ed.)."Sequence A019506 (Hoax numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  60. ^Sloane, N. J. A. (ed.)."Sequence A000384 (Hexagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  61. ^Sloane, N. J. A. (ed.)."Sequence A001606 (Indices of prime Lucas numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  62. ^Sloane, N. J. A. (ed.)."Sequence A006534".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-10.
  63. ^Sloane, N. J. A. (ed.)."Sequence A076281 (Number of 5-chromatic (i.e., chromatic number equals 5) simple graphs on n nodes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  64. ^Sloane, N. J. A. (ed.)."Sequence A059376 (Jordan function J_3(n))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  65. ^Sloane, N. J. A. (ed.)."Sequence A014439 (Differences between two positive cubes in exactly 1 way.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2019-08-18.
  66. ^Sloane, N. J. A. (ed.)."Sequence A001318 (Generalized pentagonal numbers.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2019-08-26.
  67. ^Sloane, N. J. A. (ed.)."Sequence A000110 (Bell or exponential numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  68. ^Sloane, N. J. A. (ed.)."Sequence A101929 (Number of Pythagorean triples with hypotenuse < 10^n.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-11.
  69. ^Sloane, N. J. A. (ed.)."Sequence A319190 (Number of regular hypergraphs)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2019-08-18.
  70. ^Sloane, N. J. A. (ed.)."Sequence A007661 (Triple factorial numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-11.
  71. ^Sloane, N. J. A. (ed.)."Sequence A111808 (Left half of trinomial triangle (A027907), triangle read by rows)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-11.
  72. ^Sloane, N. J. A. (ed.)."Sequence A005893 (Number of points on surface of tetrahedron)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-11.
  73. ^Sloane, N. J. A. (ed.)."Sequence A319312 (Number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-11.
  74. ^Sloane, N. J. A. (ed.)."Sequence A007749 (Numbers k such that k!! - 1 is prime)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  75. ^Sloane, N. J. A. (ed.)."Sequence A069484 (a(n) = prime(n+1)^2 + prime(n)^2.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-11.
  76. ^Sloane, N. J. A. (ed.)."Sequence A003261 (Woodall numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-11.
  77. ^Sloane, N. J. A. (ed.)."Sequence A037074 (Numbers that are the product of a pair of twin primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-11.
  78. ^Sloane, N. J. A. (ed.)."Sequence A051885 (Smallest number whose sum of digits is n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-11.
  •  0 
  •  1 
  •  2 
  •  3 
  •  4 
  •  5 
  •  6 
  •  7 
  •  8 
  •  9 
Retrieved from "https://en.wikipedia.org/w/index.php?title=800_(number)&oldid=1284290228#800s"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp