Movatterモバイル変換


[0]ホーム

URL:


Menu
×
Sign In
+1 Get Certified For Teachers Spaces Plus Get Certified For Teachers Spaces Plus
   ❮     
     ❯   

Python Tutorial

Python HOMEPython IntroPython Get StartedPython SyntaxPython CommentsPython VariablesPython Data TypesPython NumbersPython CastingPython StringsPython BooleansPython OperatorsPython ListsPython TuplesPython SetsPython DictionariesPython If...ElsePython MatchPython While LoopsPython For LoopsPython FunctionsPython LambdaPython ArraysPython OOPPython Classes/ObjectsPython InheritancePython IteratorsPython PolymorphismPython ScopePython ModulesPython DatesPython MathPython JSONPython RegExPython PIPPython Try...ExceptPython String FormattingPython User InputPython VirtualEnv

File Handling

Python File HandlingPython Read FilesPython Write/Create FilesPython Delete Files

Python Modules

NumPy TutorialPandas TutorialSciPy TutorialDjango Tutorial

Python Matplotlib

Matplotlib IntroMatplotlib Get StartedMatplotlib PyplotMatplotlib PlottingMatplotlib MarkersMatplotlib LineMatplotlib LabelsMatplotlib GridMatplotlib SubplotMatplotlib ScatterMatplotlib BarsMatplotlib HistogramsMatplotlib Pie Charts

Machine Learning

Getting StartedMean Median ModeStandard DeviationPercentileData DistributionNormal Data DistributionScatter PlotLinear RegressionPolynomial RegressionMultiple RegressionScaleTrain/TestDecision TreeConfusion MatrixHierarchical ClusteringLogistic RegressionGrid SearchCategorical DataK-meansBootstrap AggregationCross ValidationAUC - ROC CurveK-nearest neighbors

Python DSA

Python DSALists and ArraysStacksQueuesLinked ListsHash TablesTreesBinary TreesBinary Search TreesAVL TreesGraphsLinear SearchBinary SearchBubble SortSelection SortInsertion SortQuick SortCounting SortRadix SortMerge Sort

Python MySQL

MySQL Get StartedMySQL Create DatabaseMySQL Create TableMySQL InsertMySQL SelectMySQL WhereMySQL Order ByMySQL DeleteMySQL Drop TableMySQL UpdateMySQL LimitMySQL Join

Python MongoDB

MongoDB Get StartedMongoDB Create DBMongoDB CollectionMongoDB InsertMongoDB FindMongoDB QueryMongoDB SortMongoDB DeleteMongoDB Drop CollectionMongoDB UpdateMongoDB Limit

Python Reference

Python OverviewPython Built-in FunctionsPython String MethodsPython List MethodsPython Dictionary MethodsPython Tuple MethodsPython Set MethodsPython File MethodsPython KeywordsPython ExceptionsPython Glossary

Module Reference

Random ModuleRequests ModuleStatistics ModuleMath ModulecMath Module

Python How To

Remove List DuplicatesReverse a StringAdd Two Numbers

Python Examples

Python ExamplesPython CompilerPython ExercisesPython QuizPython ServerPython SyllabusPython Study PlanPython Interview Q&APython BootcampPython CertificatePython Training

Machine Learning - Polynomial Regression


Polynomial Regression

If your data points clearly will not fit a linear regression (a straight line through all data points), it might be ideal for polynomial regression.

Polynomial regression, like linear regression, uses the relationship between the variables x and y to find the best way to draw a line through the data points.


How Does it Work?

Python has methods for finding a relationship between data-points and to draw a line of polynomial regression. We will show you how to use these methods instead of going through the mathematic formula.

In the example below, we have registered 18 cars as they were passing a certain tollbooth.

We have registered the car's speed, and the time of day (hour) the passing occurred.

The x-axis represents the hours of the day and the y-axis represents the speed:

Example

Start by drawing a scatter plot:

import matplotlib.pyplot as plt

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

plt.scatter(x, y)
plt.show()

Result:

Run example »

Example

Importnumpy and matplotlib then draw the line of Polynomial Regression:

import numpy
import matplotlib.pyplot as plt

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

myline = numpy.linspace(1, 22, 100)

plt.scatter(x, y)
plt.plot(myline, mymodel(myline))
plt.show()

Result:

Run example »

Example Explained

Import the modules you need.

You can learn about the NumPy module in ourNumPy Tutorial.

You can learn about the SciPy module in ourSciPy Tutorial.

import numpy
import matplotlib.pyplot as plt

Create the arrays that represent the values of the x and y axis:

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

NumPy has a method that lets us make a polynomial model:

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

Then specify how the line will display, we start at position 1, and end at position 22:

myline = numpy.linspace(1, 22, 100)

Draw the original scatter plot:

plt.scatter(x, y)

Draw the line of polynomial regression:

plt.plot(myline, mymodel(myline))

Display the diagram:

plt.show()



R-Squared

It is important to know how well the relationship between the values of the x- and y-axis is, if there are no relationship the polynomial regression can not be used to predict anything.

The relationship is measured with a value called the r-squared.

The r-squared value ranges from 0 to 1, where 0 means no relationship, and 1 means 100% related.

Python and the Sklearn module will compute this value for you, all you have to do is feed it with the x and y arrays:

Example

How well does my data fit in a polynomial regression?

import numpy
from sklearn.metrics import r2_score

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

print(r2_score(y, mymodel(x)))
Try if Yourself »

Note: The result 0.94 shows that there is a very good relationship, and we can use polynomial regression in future predictions.


Predict Future Values

Now we can use the information we have gathered to predict future values.

Example: Let us try to predict the speed of a car that passes the tollbooth at around the time 17:00:

To do so, we need the samemymodel array from the example above:

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

Example

Predict the speed of a car passing at 17:00:

import numpy
from sklearn.metrics import r2_score

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

speed = mymodel(17)
print(speed)
Run example »

The example predicted a speed to be 88.87, which we also could read from the diagram:


Bad Fit?

Let us create an example where polynomial regression would not be the best method to predict future values.

Example

These values for the x- and y-axis should result in a very bad fit for polynomial regression:

import numpy
import matplotlib.pyplot as plt

x = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]
y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

myline = numpy.linspace(2, 95, 100)

plt.scatter(x, y)
plt.plot(myline, mymodel(myline))
plt.show()

Result:

Run example »

And the r-squared value?

Example

You should get a very low r-squared value.

import numpy
from sklearn.metrics import r2_score

x = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]
y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

print(r2_score(y, mymodel(x)))
Try if Yourself »

The result: 0.00995 indicates a very bad relationship, and tells us that this data set is not suitable for polynomial regression.


 
Track your progress - it's free!
 

×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
sales@w3schools.com

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
help@w3schools.com

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning.
Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness
of all content. While using W3Schools, you agree to have read and accepted ourterms of use,cookie and privacy policy.

Copyright 1999-2025 by Refsnes Data. All Rights Reserved.W3Schools is Powered by W3.CSS.


[8]ページ先頭

©2009-2025 Movatter.jp