Movatterモバイル変換


[0]ホーム

URL:


Menu
×
Sign In
+1 Get Certified For Teachers Spaces Plus Get Certified For Teachers Spaces Plus
   ❮     
     ❯   

Python Tutorial

Python HOMEPython IntroPython Get StartedPython SyntaxPython CommentsPython VariablesPython Data TypesPython NumbersPython CastingPython StringsPython BooleansPython OperatorsPython ListsPython TuplesPython SetsPython DictionariesPython If...ElsePython MatchPython While LoopsPython For LoopsPython FunctionsPython LambdaPython ArraysPython OOPPython Classes/ObjectsPython InheritancePython IteratorsPython PolymorphismPython ScopePython ModulesPython DatesPython MathPython JSONPython RegExPython PIPPython Try...ExceptPython String FormattingPython User InputPython VirtualEnv

File Handling

Python File HandlingPython Read FilesPython Write/Create FilesPython Delete Files

Python Modules

NumPy TutorialPandas TutorialSciPy TutorialDjango Tutorial

Python Matplotlib

Matplotlib IntroMatplotlib Get StartedMatplotlib PyplotMatplotlib PlottingMatplotlib MarkersMatplotlib LineMatplotlib LabelsMatplotlib GridMatplotlib SubplotMatplotlib ScatterMatplotlib BarsMatplotlib HistogramsMatplotlib Pie Charts

Machine Learning

Getting StartedMean Median ModeStandard DeviationPercentileData DistributionNormal Data DistributionScatter PlotLinear RegressionPolynomial RegressionMultiple RegressionScaleTrain/TestDecision TreeConfusion MatrixHierarchical ClusteringLogistic RegressionGrid SearchCategorical DataK-meansBootstrap AggregationCross ValidationAUC - ROC CurveK-nearest neighbors

Python DSA

Python DSALists and ArraysStacksQueuesLinked ListsHash TablesTreesBinary TreesBinary Search TreesAVL TreesGraphsLinear SearchBinary SearchBubble SortSelection SortInsertion SortQuick SortCounting SortRadix SortMerge Sort

Python MySQL

MySQL Get StartedMySQL Create DatabaseMySQL Create TableMySQL InsertMySQL SelectMySQL WhereMySQL Order ByMySQL DeleteMySQL Drop TableMySQL UpdateMySQL LimitMySQL Join

Python MongoDB

MongoDB Get StartedMongoDB Create DBMongoDB CollectionMongoDB InsertMongoDB FindMongoDB QueryMongoDB SortMongoDB DeleteMongoDB Drop CollectionMongoDB UpdateMongoDB Limit

Python Reference

Python OverviewPython Built-in FunctionsPython String MethodsPython List MethodsPython Dictionary MethodsPython Tuple MethodsPython Set MethodsPython File MethodsPython KeywordsPython ExceptionsPython Glossary

Module Reference

Random ModuleRequests ModuleStatistics ModuleMath ModulecMath Module

Python How To

Remove List DuplicatesReverse a StringAdd Two Numbers

Python Examples

Python ExamplesPython CompilerPython ExercisesPython QuizPython ServerPython SyllabusPython Study PlanPython Interview Q&APython BootcampPython CertificatePython Training

Machine Learning - Confusion Matrix


What is a confusion matrix?

It is a table that is used in classification problems to assess where errors in the model were made.

The rows represent the actual classes the outcomes should have been.While the columns represent the predictions we have made.Using this table it is easy to see which predictions are wrong.


Creating a Confusion Matrix

Confusion matrixes can be created by predictions made from a logistic regression.

For now we will generate actual and predicted values by utilizing NumPy:

import numpy

Next we will need to generate the numbers for "actual" and "predicted" values.

actual = numpy.random.binomial(1, 0.9, size = 1000)
predicted = numpy.random.binomial(1, 0.9, size = 1000)

In order to create the confusion matrix we need to import metrics from the sklearn module.

from sklearn import metrics

Once metrics is imported we can use the confusion matrix function on our actual and predicted values.

confusion_matrix = metrics.confusion_matrix(actual, predicted)

To create a more interpretable visual display we need to convert the table into a confusion matrix display.

cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, display_labels = [0, 1])

Vizualizing the display requires that we import pyplot from matplotlib.

import matplotlib.pyplot as plt

Finally to display the plot we can use the functions plot() and show() from pyplot.

cm_display.plot()
plt.show()

See the whole example in action:

Example

import matplotlib.pyplot as plt
import numpy
from sklearn import metrics

actual = numpy.random.binomial(1,.9,size = 1000)
predicted = numpy.random.binomial(1,.9,size = 1000)

confusion_matrix = metrics.confusion_matrix(actual, predicted)

cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, display_labels = [0, 1])

cm_display.plot()
plt.show()

Result

Run example »

Results Explained

The Confusion Matrix created has four different quadrants:

True Negative (Top-Left Quadrant)
False Positive (Top-Right Quadrant)
False Negative (Bottom-Left Quadrant)
True Positive (Bottom-Right Quadrant)

True means that the values were accurately predicted, False means that there was an error or wrong prediction.

Now that we have made a Confusion Matrix, we can calculate different measures to quantify the quality of the model. First, lets look at Accuracy.



Created Metrics

The matrix provides us with many useful metrics that help us to evaluate our classification model.

The different measures include: Accuracy, Precision, Sensitivity (Recall), Specificity, and the F-score, explained below.


Accuracy

Accuracy measures how often the model is correct.

How to Calculate

(True Positive + True Negative) / Total Predictions

Example

Accuracy = metrics.accuracy_score(actual, predicted)
Run example »

Precision

Of the positives predicted, what percentage is truly positive?

How to Calculate

True Positive / (True Positive + False Positive)

Precision does not evaluate the correctly predicted negative cases:

Example

Precision = metrics.precision_score(actual, predicted)
Run example »

Sensitivity (Recall)

Of all the positive cases, what percentage are predicted positive?

Sensitivity (sometimes called Recall) measures how good the model is at predicting positives.

This means it looks at true positives and false negatives (which are positives that have been incorrectly predicted as negative).

How to Calculate

True Positive / (True Positive + False Negative)

Sensitivity is good at understanding how well the model predicts something is positive:

Example

Sensitivity_recall = metrics.recall_score(actual, predicted)
Run example »

Specificity

How well the model is at prediciting negative results?

Specificity is similar to sensitivity, but looks at it from the persepctive of negative results.

How to Calculate

True Negative / (True Negative + False Positive)

Since it is just the opposite of Recall, we use the recall_score function, taking the opposite position label:

Example

Specificity = metrics.recall_score(actual, predicted, pos_label=0)
Run example »

F-score

F-score is the "harmonic mean" of precision and sensitivity.

It considers both false positive and false negative cases and is good for imbalanced datasets.

How to Calculate

2 * ((Precision * Sensitivity) / (Precision + Sensitivity))

This score does not take into consideration the True Negative values:

Example

F1_score = metrics.f1_score(actual, predicted)
Run example »

All calulations in one:

Example

#metrics
print({"Accuracy":Accuracy,"Precision":Precision,"Sensitivity_recall":Sensitivity_recall,"Specificity":Specificity,"F1_score":F1_score})
Run example »

 
Track your progress - it's free!
 

×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
sales@w3schools.com

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
help@w3schools.com

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning.
Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness
of all content. While using W3Schools, you agree to have read and accepted ourterms of use,cookie and privacy policy.

Copyright 1999-2025 by Refsnes Data. All Rights Reserved.W3Schools is Powered by W3.CSS.


[8]ページ先頭

©2009-2025 Movatter.jp