Movatterモバイル変換


[0]ホーム

URL:


Menu
×
Sign In
+1 Get Certified For Teachers Spaces Plus Get Certified For Teachers Spaces Plus
   ❮     
     ❯   

Python Tutorial

Python HOMEPython IntroPython Get StartedPython SyntaxPython CommentsPython VariablesPython Data TypesPython NumbersPython CastingPython StringsPython BooleansPython OperatorsPython ListsPython TuplesPython SetsPython DictionariesPython If...ElsePython MatchPython While LoopsPython For LoopsPython FunctionsPython LambdaPython ArraysPython OOPPython Classes/ObjectsPython InheritancePython IteratorsPython PolymorphismPython ScopePython ModulesPython DatesPython MathPython JSONPython RegExPython PIPPython Try...ExceptPython String FormattingPython User InputPython VirtualEnv

File Handling

Python File HandlingPython Read FilesPython Write/Create FilesPython Delete Files

Python Modules

NumPy TutorialPandas TutorialSciPy TutorialDjango Tutorial

Python Matplotlib

Matplotlib IntroMatplotlib Get StartedMatplotlib PyplotMatplotlib PlottingMatplotlib MarkersMatplotlib LineMatplotlib LabelsMatplotlib GridMatplotlib SubplotMatplotlib ScatterMatplotlib BarsMatplotlib HistogramsMatplotlib Pie Charts

Machine Learning

Getting StartedMean Median ModeStandard DeviationPercentileData DistributionNormal Data DistributionScatter PlotLinear RegressionPolynomial RegressionMultiple RegressionScaleTrain/TestDecision TreeConfusion MatrixHierarchical ClusteringLogistic RegressionGrid SearchCategorical DataK-meansBootstrap AggregationCross ValidationAUC - ROC CurveK-nearest neighbors

Python DSA

Python DSALists and ArraysStacksQueuesLinked ListsHash TablesTreesBinary TreesBinary Search TreesAVL TreesGraphsLinear SearchBinary SearchBubble SortSelection SortInsertion SortQuick SortCounting SortRadix SortMerge Sort

Python MySQL

MySQL Get StartedMySQL Create DatabaseMySQL Create TableMySQL InsertMySQL SelectMySQL WhereMySQL Order ByMySQL DeleteMySQL Drop TableMySQL UpdateMySQL LimitMySQL Join

Python MongoDB

MongoDB Get StartedMongoDB Create DBMongoDB CollectionMongoDB InsertMongoDB FindMongoDB QueryMongoDB SortMongoDB DeleteMongoDB Drop CollectionMongoDB UpdateMongoDB Limit

Python Reference

Python OverviewPython Built-in FunctionsPython String MethodsPython List MethodsPython Dictionary MethodsPython Tuple MethodsPython Set MethodsPython File MethodsPython KeywordsPython ExceptionsPython Glossary

Module Reference

Random ModuleRequests ModuleStatistics ModuleMath ModulecMath Module

Python How To

Remove List DuplicatesReverse a StringAdd Two Numbers

Python Examples

Python ExamplesPython CompilerPython ExercisesPython QuizPython ServerPython SyllabusPython Study PlanPython Interview Q&APython BootcampPython CertificatePython Training

PythonTrees


A tree is a hierarchical data structure consisting of nodes connected by edges.

Each node contains a value and references to its child nodes.


Trees

The Tree data structure is similar toLinked Lists in that each node contains data and can be linked to other nodes.

We have previously covered data structures like Arrays, Linked Lists, Stacks, and Queues. These are all linear structures, which means that each element follows directly after another in a sequence. Trees however, are different. In a Tree, a single element can have multiple 'next' elements, allowing the data structure to branch out in various directions.

The data structure is called a "tree" because it looks like a tree's structure.

RABCDEFGHI

The Tree data structure can be useful in many cases:

  • Hierarchical Data: File systems, organizational models, etc.
  • Databases: Used for quick data retrieval.
  • Routing Tables: Used for routing data in network algorithms.
  • Sorting/Searching: Used for sorting data and searching for data.
  • Priority Queues: Priority queue data structures are commonly implemented using trees, such as binary heaps.

Types of Trees

Trees are a fundamental data structure in computer science, used to represent hierarchical relationships. This tutorial covers several key types of trees.

Binary Trees:Each node has up to two children, the left child node and the right child node. This structure is the foundation for more complex tree types like Binay Search Trees and AVL Trees.

Binary Search Trees (BSTs):A type of Binary Tree where for each node, the left child node has a lower value, and the right child node has a higher value.

AVL Trees:A type of Binary Search Tree that self-balances so that for every node, the difference in height between the left and right subtrees is at most one. This balance is maintained through rotations when nodes are inserted or deleted.

Each of these data structures are described in detail on the next pages, including animations and how to implement them.


Trees vs Arrays and Linked Lists

Benefits of Trees over Arrays and Linked Lists:

  • Arrays are fast when you want to access an element directly, like element number 700 in an array of 1000 elements for example. But inserting and deleting elements require other elements to shift in memory to make place for the new element, or to take the deleted elements place, and that is time consuming.
  • Linked Lists are fast when inserting or deleting nodes, no memory shifting needed, but to access an element inside the list, the list must be traversed, and that takes time.
  • Trees, such as Binary Trees, Binary Search Trees and AVL Trees, are great compared to Arrays and Linked Lists because they are BOTH fast at accessing a node, AND fast when it comes to deleting or inserting a node, with no shifts in memory needed.

 
Track your progress - it's free!
 

×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
sales@w3schools.com

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
help@w3schools.com

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning.
Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness
of all content. While using W3Schools, you agree to have read and accepted ourterms of use,cookie and privacy policy.

Copyright 1999-2025 by Refsnes Data. All Rights Reserved.W3Schools is Powered by W3.CSS.


[8]ページ先頭

©2009-2025 Movatter.jp