Movatterモバイル変換


[0]ホーム

URL:


Menu
×
Sign In
+1 Get Certified For Teachers Spaces Plus Get Certified For Teachers Spaces Plus
   ❮     
     ❯   

Python Tutorial

Python HOMEPython IntroPython Get StartedPython SyntaxPython CommentsPython VariablesPython Data TypesPython NumbersPython CastingPython StringsPython BooleansPython OperatorsPython ListsPython TuplesPython SetsPython DictionariesPython If...ElsePython MatchPython While LoopsPython For LoopsPython FunctionsPython LambdaPython ArraysPython OOPPython Classes/ObjectsPython InheritancePython IteratorsPython PolymorphismPython ScopePython ModulesPython DatesPython MathPython JSONPython RegExPython PIPPython Try...ExceptPython String FormattingPython User InputPython VirtualEnv

File Handling

Python File HandlingPython Read FilesPython Write/Create FilesPython Delete Files

Python Modules

NumPy TutorialPandas TutorialSciPy TutorialDjango Tutorial

Python Matplotlib

Matplotlib IntroMatplotlib Get StartedMatplotlib PyplotMatplotlib PlottingMatplotlib MarkersMatplotlib LineMatplotlib LabelsMatplotlib GridMatplotlib SubplotMatplotlib ScatterMatplotlib BarsMatplotlib HistogramsMatplotlib Pie Charts

Machine Learning

Getting StartedMean Median ModeStandard DeviationPercentileData DistributionNormal Data DistributionScatter PlotLinear RegressionPolynomial RegressionMultiple RegressionScaleTrain/TestDecision TreeConfusion MatrixHierarchical ClusteringLogistic RegressionGrid SearchCategorical DataK-meansBootstrap AggregationCross ValidationAUC - ROC CurveK-nearest neighbors

Python DSA

Python DSALists and ArraysStacksQueuesLinked ListsHash TablesTreesBinary TreesBinary Search TreesAVL TreesGraphsLinear SearchBinary SearchBubble SortSelection SortInsertion SortQuick SortCounting SortRadix SortMerge Sort

Python MySQL

MySQL Get StartedMySQL Create DatabaseMySQL Create TableMySQL InsertMySQL SelectMySQL WhereMySQL Order ByMySQL DeleteMySQL Drop TableMySQL UpdateMySQL LimitMySQL Join

Python MongoDB

MongoDB Get StartedMongoDB Create DBMongoDB CollectionMongoDB InsertMongoDB FindMongoDB QueryMongoDB SortMongoDB DeleteMongoDB Drop CollectionMongoDB UpdateMongoDB Limit

Python Reference

Python OverviewPython Built-in FunctionsPython String MethodsPython List MethodsPython Dictionary MethodsPython Tuple MethodsPython Set MethodsPython File MethodsPython KeywordsPython ExceptionsPython Glossary

Module Reference

Random ModuleRequests ModuleStatistics ModuleMath ModulecMath Module

Python How To

Remove List DuplicatesReverse a StringAdd Two Numbers

Python Examples

Python ExamplesPython CompilerPython ExercisesPython QuizPython ServerPython SyllabusPython Study PlanPython Interview Q&APython BootcampPython CertificatePython Training

Insertion Sort with Python


Insertion Sort

The Insertion Sort algorithm uses one part of the array to hold the sorted values, and the other part of the array to hold values that are not sorted yet.


{{ msgDone }}

The algorithm takes one value at a time from the unsorted part of the array and puts it into the right place in the sorted part of the array, until the array is sorted.

How it works:

  1. Take the first value from the unsorted part of the array.
  2. Move the value into the correct place in the sorted part of the array.
  3. Go through the unsorted part of the array again as many times as there are values.

Manual Run Through

Before we implement the Insertion Sort algorithm in a Python program, let's manually run through a short array, just to get the idea.

Step 1: We start with an unsorted array.

[ 7, 12, 9, 11, 3]

Step 2: We can consider the first value as the initial sorted part of the array. If it is just one value, it must be sorted, right?

[ 7, 12, 9, 11, 3]

Step 3: The next value 12 should now be moved into the correct position in the sorted part of the array. But 12 is higher than 7, so it is already in the correct position.

[ 7, 12, 9, 11, 3]

Step 4: Consider the next value 9.

[ 7, 12, 9, 11, 3]

Step 5: The value 9 must now be moved into the correct position inside the sorted part of the array, so we move 9 in between 7 and 12.

[ 7, 9, 12, 11, 3]

Step 6: The next value is 11.

[ 7, 9, 12, > 11, 3]

Step 7: We move it in between 9 and 12 in the sorted part of the array.

[ 7, 9, 11, 12, 3]

Step 8: The last value to insert into the correct position is 3.

[ 7, 9, 11, 12, 3]

Step 9: We insert 3 in front of all other values because it is the lowest value.

[ 3,7, 9, 11, 12]

Finally, the array is sorted.


Run the simulation below to see the steps above animated:

{{ msgDone }}
[
{{ x.dieNmbr }}
]

Implement Insertion Sort in Python

To implement the Insertion Sort algorithm in a Python program, we need:

  1. An array with values to sort.
  2. An outer loop that picks a value to be sorted. For an array with \(n\) values, this outer loop skips the first value, and must run \(n-1\) times.
  3. An inner loop that goes through the sorted part of the array, to find where to insert the value. If the value to be sorted is at index \(i\), the sorted part of the array starts at index \(0\) and ends at index \(i-1\).

The resulting code looks like this:

Example

Using the Insertion Sort on a Python list:

mylist = [64, 34, 25, 12, 22, 11, 90, 5]

n = len(mylist)
for i in range(1,n):
  insert_index = i
  current_value = mylist.pop(i)
  for j in range(i-1, -1, -1):
    if mylist[j] > current_value:
      insert_index = j
  mylist.insert(insert_index, current_value)

print(mylist)
Run Example »

Insertion Sort Improvement

Insertion Sort can be improved a little bit more.

The way the code above first removes a value and then inserts it somewhere else is intuitive. It is how you would do Insertion Sort physically with a hand of cards for example. If low value cards are sorted to the left, you pick up a new unsorted card, and insert it in the correct place between the other already sorted cards.

The problem with this way of programming it is that when removing a value from the array, all elements above must be shifted one index place down:

Removing an element from an array

And when inserting the removed value into the array again, there are also many shift operations that must be done: all following elements must shift one position up to make place for the inserted value:

Inserting an element into an array

These shifting operations can take a lot of time, especially for an array with many elements.

Hidden memory shifts:You will not see these shifting operations happening in the code if you are using a high-level programming language such as Python or JavaScript, but the shifting operations are still happening in the background. Such shifting operations require extra time for the computer to do, which can be a problem.

You can read more about how arrays are stored in memoryhere.


Improved Solution

We can avoid most of these shift operations by only shifting the values necessary:

Moving an element in an array efficiently

In the image above, first value 7 is copied, then values 11 and 12 are shifted one place up in the array, and at last value 7 is put where value 11 was before.

The number of shifting operations is reduced from 12 to 2 in this case.

This improvement is implemented in the example below:

Example

Insert the improvements in the sorting algorithm:

mylist = [64, 34, 25, 12, 22, 11, 90, 5]

n = len(mylist)
for i in range(1,n):
  insert_index = i
  current_value = mylist[i]
  for j in range(i-1, -1, -1):
     if mylist[j] > current_value:
       mylist[j+1] = mylist[j]
       insert_index = j
     else:
       break
  mylist[insert_index] = current_value

print(mylist)
Run Example »

What is also done in the code above is to break out of the inner loop. That is because there is no need to continue comparing values when we have already found the correct place for the current value.


Insertion Sort Time Complexity

Insertion Sort sorts an array of \(n\) values.

On average, each value must be compared to about \(\frac{n}{2}\) other values to find the correct place to insert it.

Insertion Sort must run the loop to insert a value in its correct place approximately \(n\) times.

We get time complexity for Insertion Sort: \( O( \frac{n}{2} \cdot n) = {O(n^2)} \)

The time complexity for Insertion Sort can be displayed like this:

Time Complexity for Insertion Sort

For Insertion Sort, there is a big difference between best, average and worst case scenarios.

Next up is Quicksort. Finally we will see a faster sorting algorithm!


 
Track your progress - it's free!
 

×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
sales@w3schools.com

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
help@w3schools.com

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning.
Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness
of all content. While using W3Schools, you agree to have read and accepted ourterms of use,cookie and privacy policy.

Copyright 1999-2025 by Refsnes Data. All Rights Reserved.W3Schools is Powered by W3.CSS.


[8]ページ先頭

©2009-2025 Movatter.jp