Movatterモバイル変換


[0]ホーム

URL:


Menu
×
Sign In
+1 Get Certified For Teachers Spaces Plus Get Certified For Teachers Spaces Plus
   ❮     
     ❯   

Python Tutorial

Python HOMEPython IntroPython Get StartedPython SyntaxPython CommentsPython VariablesPython Data TypesPython NumbersPython CastingPython StringsPython BooleansPython OperatorsPython ListsPython TuplesPython SetsPython DictionariesPython If...ElsePython MatchPython While LoopsPython For LoopsPython FunctionsPython LambdaPython ArraysPython OOPPython Classes/ObjectsPython InheritancePython IteratorsPython PolymorphismPython ScopePython ModulesPython DatesPython MathPython JSONPython RegExPython PIPPython Try...ExceptPython String FormattingPython User InputPython VirtualEnv

File Handling

Python File HandlingPython Read FilesPython Write/Create FilesPython Delete Files

Python Modules

NumPy TutorialPandas TutorialSciPy TutorialDjango Tutorial

Python Matplotlib

Matplotlib IntroMatplotlib Get StartedMatplotlib PyplotMatplotlib PlottingMatplotlib MarkersMatplotlib LineMatplotlib LabelsMatplotlib GridMatplotlib SubplotMatplotlib ScatterMatplotlib BarsMatplotlib HistogramsMatplotlib Pie Charts

Machine Learning

Getting StartedMean Median ModeStandard DeviationPercentileData DistributionNormal Data DistributionScatter PlotLinear RegressionPolynomial RegressionMultiple RegressionScaleTrain/TestDecision TreeConfusion MatrixHierarchical ClusteringLogistic RegressionGrid SearchCategorical DataK-meansBootstrap AggregationCross ValidationAUC - ROC CurveK-nearest neighbors

Python DSA

Python DSALists and ArraysStacksQueuesLinked ListsHash TablesTreesBinary TreesBinary Search TreesAVL TreesGraphsLinear SearchBinary SearchBubble SortSelection SortInsertion SortQuick SortCounting SortRadix SortMerge Sort

Python MySQL

MySQL Get StartedMySQL Create DatabaseMySQL Create TableMySQL InsertMySQL SelectMySQL WhereMySQL Order ByMySQL DeleteMySQL Drop TableMySQL UpdateMySQL LimitMySQL Join

Python MongoDB

MongoDB Get StartedMongoDB Create DBMongoDB CollectionMongoDB InsertMongoDB FindMongoDB QueryMongoDB SortMongoDB DeleteMongoDB Drop CollectionMongoDB UpdateMongoDB Limit

Python Reference

Python OverviewPython Built-in FunctionsPython String MethodsPython List MethodsPython Dictionary MethodsPython Tuple MethodsPython Set MethodsPython File MethodsPython KeywordsPython ExceptionsPython Glossary

Module Reference

Random ModuleRequests ModuleStatistics ModuleMath ModulecMath Module

Python How To

Remove List DuplicatesReverse a StringAdd Two Numbers

Python Examples

Python ExamplesPython CompilerPython ExercisesPython QuizPython ServerPython SyllabusPython Study PlanPython Interview Q&APython BootcampPython CertificatePython Training

Bubble Sort with Python


Bubble Sort

Bubble Sort is an algorithm that sorts an array from the lowest value to the highest value.


{{ msgDone }}

Run the simulation to see how it looks like when the Bubble Sort algorithm sorts an array of values. Each value in the array is represented by a column.

The word 'Bubble' comes from how this algorithm works, it makes the highest values 'bubble up'.

How it works:

  1. Go through the array, one value at a time.
  2. For each value, compare the value with the next value.
  3. If the value is higher than the next one, swap the values so that the highest value comes last.
  4. Go through the array as many times as there are values in the array.

Manual Run Through

Before we implement the Bubble Sort algorithm in a programming language, let's manually run through a short array only one time, just to get the idea.

Step 1: We start with an unsorted array.

[7, 12, 9, 11, 3]

Step 2: We look at the two first values. Does the lowest value come first? Yes, so we don't need to swap them.

[7, 12, 9, 11, 3]

Step 3: Take one step forward and look at values 12 and 9. Does the lowest value come first? No.

[7,12, 9, 11, 3]

Step 4: So we need to swap them so that 9 comes first.

[7,9, 12, 11, 3]

Step 5: Taking one step forward, looking at 12 and 11.

[7, 9,12, 11, 3]

Step 6: We must swap so that 11 comes before 12.

[7, 9,11, 12, 3]

Step 7: Looking at 12 and 3, do we need to swap them? Yes.

[7, 9, 11,12, 3]

Step 8: Swapping 12 and 3 so that 3 comes first.

[7, 9, 11,3, 12]

Repeat until no more swaps are needed and you will get a sorted array:

{{ msgDone }}
[
{{ x.dieNmbr }}
]

Implement Bubble Sort in Python

To implement the Bubble Sort algorithm in Python, we need:

  1. An array with values to sort.
  2. An inner loop that goes through the array and swaps values if the first value is higher than the next value. This loop must loop through one less value each time it runs.
  3. An outer loop that controls how many times the inner loop must run. For an array with n values, this outer loop must run n-1 times.

The resulting code looks like this:

Example

Create a Bubble Sort algorithm in Python:

mylist = [64, 34, 25, 12, 22, 11, 90, 5]

n = len(mylist)
for i in range(n-1):
  for j in range(n-i-1):
    if mylist[j] > mylist[j+1]:
      mylist[j], mylist[j+1] = mylist[j+1], mylist[j]

print(mylist)
Run Example »

Bubble Sort Improvement

The Bubble Sort algorithm can be improved a little bit more.

Imagine that the array is almost sorted already, with the lowest numbers at the start, like this for example:

mylist = [7, 3, 9, 12, 11]

In this case, the array will be sorted after the first run, but the Bubble Sort algorithm will continue to run, without swapping elements, and that is not necessary.

If the algorithm goes through the array one time without swapping any values, the array must be finished sorted, and we can stop the algorithm, like this:

Example

Improved Bubble Sort algorithm:

mylist = [7, 3, 9, 12, 11]

n = len(mylist)
for i in range(n-1):
  swapped = False
  for j in range(n-i-1):
    if mylist[j] > mylist[j+1]:
      mylist[j], mylist[j+1] = mylist[j+1], mylist[j]
      swapped = True
  if not swapped:
    break

print(mylist)
Run Example »

Bubble Sort Time Complexity

The Bubble Sort algorithm loops through every value in the array, comparing it to the value next to it. So for an array of \(n\) values, there must be \(n\) such comparisons in one loop.

And after one loop, the array is looped through again and again \(n\) times.

This means there are \(n \cdot n\) comparisons done in total, so the time complexity for Bubble Sort is: \( O(n^2) \)

The graph describing the Bubble Sort time complexity looks like this:

Bubble Sort time complexity

As you can see, the run time increases really fast when the size of the array is increased.

Luckily there are sorting algorithms that are faster than this, likeQuicksort, that we will look at later.


 
Track your progress - it's free!
 

×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
sales@w3schools.com

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
help@w3schools.com

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning.
Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness
of all content. While using W3Schools, you agree to have read and accepted ourterms of use,cookie and privacy policy.

Copyright 1999-2025 by Refsnes Data. All Rights Reserved.W3Schools is Powered by W3.CSS.


[8]ページ先頭

©2009-2025 Movatter.jp