Movatterモバイル変換


[0]ホーム

URL:


Statistical Physics

 Joseph-Louis Lagrange  1736-1813 James Clerk Maxwell  1831-1879
A scientist's aim [...] is not to persuade, but to clarify.
Leó Szilárd  (1898-1964) 
 border
 border

Related articles on this site:

Related Links (Outside this Site)

Physics 301Thermal Physics   by  Ed. Groth  (Princeton University).
Equipartition of Energy   |  The Ergodic Hypothesis
Ergodic Theory by Cosma Rohilla Shalizi, Ph.D.  (CMU).
Einstein's Random Walk by Mark Haw  (Physics World, January 2005).
 
border
border

Statistical Physics, Thermal Physics


(2006-09-29)  
Maximizing under one constraint, or several constraints.

Consider a smooth function  S  of   variables: S ( x1, x2, ... , x ).

We seek to maximize  S  subject to the constraint that some other function  F  of those same variables is a given constant. Lagrange's method associates a parameter   to such a constraint and introduces a new function  L :

L   =   S  +  F

The key point is that the constrainedmaximum we seek  (assuming there is one) occurs at a saddlepoint of  L  (i.e.,dL = 0)  for a specific value of  .

At the constrained maximum, any displacement which maintainsthe constraint entails a vanishingvariation of  S  (i.e., dF = 0    dS = 0).

dx1 , ... ,dx i   F  dxi   = 0  {  i   S  dxi   = 0 
vinculumvinculum
xixi

Thus, any  -dimensionalvector which is perpendicular to [F/xi] is also perpendicular to [S/xi]. Therefore, these two are proportional:

,   i ,       S  +     F    =   0    QED
vinculumvinculum
xixi

The parameter   thus obtained is called a Lagrange multiplier. One such Lagrange multiplier  corresponds to each of several  simultaneous constraints. Any constrained saddlepoint (possiblya maximum)  of  S  is an unrestricted saddlepoint ofthe following function  L ,  and vice-versa.

L   =   S  + n n Fn

...   i ,     S  +  n n   F    =   0
vinculumvinculum
xixi

The (constant) value of each  Fn can be retrieved as  L / n.


(2006-09-29)  
For an isolated system, entropy is maximal withequiprobable states.

Let's apply theabove to ClaudeShannon's definition ofstatistical entropy in termsof the respective probabilities of the   possible states:

 
S ( p1, p2, ... , p )  =    
 
n = 1
 
  k pn  Log (pn)
 

The basic constraint of completeness  ( p1 + p2 + ... + p =  1 )  is the only  constraintfor the probabilities in a completely isolated  system.

L   =   S + F  =   S + ( p1 + p2 + ... + p )
 
0   =  L / pi  =      k [ 1 + Log(pi) ]

Therefore, all values of  pi  are equal to  exp( /k-1)  =  1/

Plugging this equiprobability into the expression of  S,  yieldsBoltzmann's relation for a microcanonical ensemble  (i.e., an isolated system).

Boltzmann's Relation  (1877)
S   =   k  Log()


(2013-02-21)  
Every degree of freedom gets an equal share  (½ kT)  of thermal energy.

The particular forms of the formulas in classical mechanics are such thatthe total energy of every component in a large systemis the sum of the energies corresponding to all its degrees of freedom: Each of those is proportional either to the square of a velocity orto the square of a displacement (using thenonrelativistic expression of kineticorrotational energyand the approximation of Hooke's law for potential energy).

 Come back later, we're still working on this one...


(2006-09-29)  
In a heat bath, probabilities are proportional to Boltzmann factors.

Let  Ei  be the energy of state i. Putting the system in thermal equilibrium with a "heat bath"makes its average  energy  pEi constant.  This can be viewed as an additional "constraint" correspondingto a new Lagrange multiplier .

L   =   S  +   pi  +   pEi

  turns out to be inversely proportionalto the temperature of the bath.

 Come back later, we're still working on this one...

Canonical: Average energy pi Eiis constant for the system in contact with a heat bath.Lagrange multiplier is inversely proportional to temperature.

Micro-canonical: Given energy for the system... Special case is equipartionof energy between loosely connected degrees of freedom.

 Come back later, we're still working on this one...


(2006-09-29)  
Taking into account the possibility of chemical exchanges.

 Come back later, we're still working on this one...


(2012-07-17)     (1924)
Many particles (bosons) may occupy thesame state.
 

For masssless bosons  (photons)  at thermal equilibrium,the occupation number per quantum state is:

1
vinculum
exp ( h / kT ) 1

 Come back later, we're still working on this one...

Elementary particles with whole-integer spins are called Bosons  because they obeyBose-Einstein statistics (the term was coined by Paul Dirac).


(2012-07-17)     (1926)
All particles (fermions) are in different states.

Anelementary particle  whose spin isn't a whole multipleof the quantum pf spin  must have half-integer spin. Such particles  obey the Fermi-Dirac statistics described below and they're known as Fermions.

As fermions obey the Pauli exclusion principle, no two identical fermions can occupy the same quantum state of energy .  When there many fermions, the average number found in a given state of energy   is:

1
vinculum
exp ( [] / kT )+ 1

 Come back later, we're still working on this one...


(2006-09-29)    (foreither bosons or fermions)
The low occupancy limit  applies when almost all  states are unoccupied.

 Come back later, we're still working on this one...


(2006-09-30)  
Boltzmann statistics applied tothe molecules in a classicalperfect gas.

 Come back later, we're still working on this one...


(2006-09-29)  
Thermal summary of a distribution.

 Come back later, we're still working on this one...


(2014-03-24)  
Fock basis  for the tensor product of many identical Hilbert spaces.

 Come back later, we're still working on this one...

border
border
visits since January 15, 2009
 (c) Copyright 2000-2018, Gerard P. Michon, Ph.D.

[8]ページ先頭

©2009-2025 Movatter.jp