Movatterモバイル変換


[0]ホーム

URL:


Special Polynomials

The pursuit of mathematics is a refuge from
the goading urgency of contingent happenings.

Alfred North Whitehead (1861-1947)
 Michon
 

Related articles on this site:

Related Links (Outside this Site)

Online Polynomial Calculator by Xavier R. Junqué de Fortuny  (Barcelona)

 
border
border

Special Polynomials


(2012-02-15)  
A family of commuting  polynomial functions.  TnTp =  TpTn =  Tnp

cos(n) is a polynomialfunction of cos(). The following relation defines a polynomial of degree nknown as theChebyshev polynomial of degree n:

cos (n)   =  Tn(cos )

The trigonometric formula  cos (n+2)  = 2 cos cos (n+1)cos n  translates into a simple recurrence relation which makes Chebyshev polynomialsvery easy to tabulate, namely:

T0(x)  =  1Tn+2(x)   =  2 x Tn+1(x)    Tn(x)
T1(x)  =  x
T2(x)  =  -1+2 x2
T3(x)  =  -3 x+4 x3
T4(x)  =  18 x2+8 x4
T5(x)  =  5 x20 x3+16 x5
T6(x)  =  -1+18 x248 x4+32 x6
T7(x)  =  -7 x+56 x3112 x5+64 x7
T(x)  =  132 x2+160 x4256 x6+128 x8

Knowing only the highest term of  Tn  and its obvious  n  distinct real zeroes, we obtain immediately  Tn  as a product of  n  factors:

If  n > 0,   then     Tn(x)   =   2 n-1    ( x cos (k+½)/n )

The case  Tn(0) = (-1)n  tellssomething nice about a product of cosines.

Inverse formulas :

x0  =  T0 
x1  =  T1 
2 x2  =  T0+T2
4 x3  =  3 T1+T3
8 x4  =  3 T0+4 T2+T4
16 x5  =  10 T1+5 T3+T5
32 x6  =  10 T0+15 T2+6 T4+T6
64 x7  =  35 T1+21 T3+7 T5+T7
128 x8  =  35 T0+56 T2+28 T4+8 T6+T8

(2014-07-26)  A solution looking for a problem :

Chebyshev polynomials verify   Tm(Tn(x))  = Tmn(x).  This unique property makes it possible to define pairs ofclosely related functions from any pair of arithmetic functions u and v (with subexponential growth)  that areDirichlet inverses of each other,using the following symmetrical relations:

 
g ( x )   =      u(n) f ( Tn(x) )
 
 
f ( x )   =      v(n)  g ( Tn(x) )
 

:  Expand the latter right-hand-side using the definition of  g :

m  n u(n) v(m) f ( Tmn (x) )  =   k d|k u(d) v(k/d) f ( T(x) )

u and v being Dirichlet inverses,the bracket is either  1  (if k = 1)  or  0.  QED

This applies, in particular, when  u  is atotally multiplicativearithmetic function  [i.e., such that  u(mn)  =  u(m) u(n) for any  m & n ] in which case its Dirichlet inverse can be expressed using theMöbius function () :

v(n)   =   (n) u(n)

Using Tn(x) = x1/n instead of Chebyshev polynomials,this pattern was used in 1859 byRiemann to linkhis (normalized) prime-counting function f =  with the celebrated jump function g = J  he obtained with  u(n) = 1/n.


(2015-12-06)  
They are denoted by the symbol  U  (simply because U comes afterT ).

They obey exactly the same second-order recurrence relation as the aboveChebychev polynomials of the first kind but the startingpoints are different:

T0(x)  =  1
T1(x)  =  x
 U0(x)  =  1
U1(x)  =  2x

U0(x)  =  1Un+2(x)   =  2 x Un+1(x)    Un(x)
U1(x)  =  2 x
U2(x)  =  -1+4 x2
U3(x)  =  -4 x+8 x3
U4(x)  =  112 x2+16 x4
U5(x)  =  6 x32 x3+32 x5
U6(x)  =  -1+24 x280 x4+64 x6
U7(x)  =  -8 x+80 x3192 x5+128 x7
U(x)  =  140 x2+240 x4448 x6+256 x8

Inverse formulas :

x0  =  U0 
2 x1  =  U1 
4 x2  =  U0+U2
8 x3  =  2 U1+U3
16 x4  =  2 U0+3 U2+U4
32 x5  =  10 U1+4 U3+U5
64 x6  =  5 U0+9 U2+5 U4+U6
128 x7  =  14 U1+14 U3+6 U5+U7
256 x8  =  14 U0+28 U2+20 U4+7 U6+U8


 Adrien-Marie Legendre  1752-1833 (2012-02-15)  
Key to Coulombianmultipole expansionspherical harmonics.

TheLegendre polynomials (A008316) are recursively defined by:

P0(x)=1;Pn(x)   =   (2-1/n) x Pn-1(x)  (1-1/n) Pn-2(x)
P1(x)=x Adrien-Marie Legendre (1752-1833)
2P2 (x)=-1+3 x2
2P3 (x)=-3 x+5 x3
8P4 (x)=330 x2+35 x4
8P5 (x)=15 x70 x3+63 x5
16P6 (x)=-5+105 x2315 x4+231 x6
16P7 (x)=-35 x+315 x3693 x5+429 x7
128P8 (x)=351260 x2+6930 x412012 x6+6435 x8

They are linked to the expressions of spherical harmonics in terms of the colatitude  [0,[  and the longitude   (modulo2).


(2012-02-16)  
Radial part of the solution of theSchrödinger equationfor hydrogenoids.

Laguerre's equation  is a second-order linear differential equation:

x y''  +  (1-x) y'  +  n y   =   0

It has non-singular solutions only when  n  is a non-negative integer. In that case,  a solution is  Ln(n),  the Laguerre polynomial of order ngiven by:

 L0(x)  =  1(n+1) Ln+l(x)  =  (2n+1-x) Ln(x) - n Ln-1(x)
 L1(x)  =  1- x
L2(x)  =  2- 4x+ x2
L3(x)  =  6- 18x+ 9x2- x3
24 L4(x)  =  24- 96x+ 72x2- 16x3+ x4
120 L5(x)  =  120- 600x+ 600x2- 200x3+ 25x4- x5
720 L6(x)  =  720- 4320x+ 5400x2- 2400x3+ 450x4- 36x5+ x6
5040 L7(x)  =  5040-35280x+52920x2-29400x3+7350x4-882x5+49x6-x7
 
 

Sorin is credited for the following generalized Laguerre equation :

x y''  +  (+1-x) y'  +  n y   =   0

This is satisfied by theLaguerre function,  defined by:

L)
n
   =     n+
n-p
 (-x)p
 Vinculum
p!
n=1

Because of the way binomial coefficients  vanish, a polynomial  (a finite sum)  called associated Laguerre polynomial is so obtained when  n  is a non-negative integer. Otherwise,  the above is a divergent series  which is Borel-summable.

Ordinary Laguerre polynomials  correspond to the special case  = 0.


(2012-02-18)  
Eigenstates of the quantum harmonic oscillator.

H0(x)=1Hn+1(x)   =   2x Hn(x)  2n Hn-1(x)
H1(x)=2 x
H2 (x)=-2+4 x2
H3 (x)=-12 x+8 x3
H4 (x)=1248 x2+16 x4
H5 (x)=120 x160 x3+32 x5
H6 (x)=-120+720 x2480 x4+64 x6
H7 (x)=-1680 x+3360 x31344 x5+128 x7

The above are more popular than the simpler modified Hermite polynomials  Hen  which can be defined via: Hn(x)   =   2n/2 Hen(2½x)

He0(x)=1Hen+1(x)  =  x Hen(x)  n Hen-1(x)
He1(x)=x 
He2 (x)=-1+x2
He3 (x)=-3 x+x3
He4 (x)=36 x2+x4
He5 (x)=15 x10 x3+x5
He6 (x)=-15+45 x215 x4+x6
He7 (x)=-105 x+105 x321 x5+x7


(2014-12-07)  

The reverse Bessel polynomials  tabulated belowappear in the transfer functions ofBessel-Thomson filters


0(s)  =  1
1(s)  =  1+ sn   =  (2n-1)n-1  + s2n-2
2(s)  =  3+ 3 s+ s2
3(s)  =  15+ 15 s+ 6 s2+ s3
4(s)  =  105+ 105 s+ 45 s2+ 10 s3+ s4
5(s)  =  945+ 945 s+ 420 s2+ 105 s3+ 15 s4+ s5
6(s)  =  10395+ 10395 s+ 4725 s2+ 1260 s3+ 210 s4+ 21 s5+ s6


 Bernoulli (2013-04-24)  

Like Hermite polynomials  and Euler polynomials,  the sequenceof  Bernoulli polynomials  start with some nonzero constant polynomial (namely, 1)  and subsequentlyverify the Appell property, which is to say:

dBn(x) / dx   =   n Bn-1(x)

This relation becomes a recursive definition if the successive constants of integration  are given as a prescribed sequence:

Bn   =   Bn(0)

The polynomials can be expressed in terms of that sequence of numbers:

Bn (x)   =   n

    n
k
   Bk   xn-k

 Come back later, we're still working on this one...

B0(x)=1  
B1(x)=x   1/2
B2 (x)=x2    x+ 1/6
B3 (x)=x3 3/ x2+1/2 x+ 0
B4 (x)=x4   2 x3+  x2 1/30
B5 (x)=x5  5/2 x4+ 5/3 x3 1/ x+ 0
B6 (x)=x6   3 x5+ 5/2 x4 1/2 x2+1/42
B7 (x)=x7  7/2 x6+ 7/2  x5 7/6 x3+ 1/6  x+ 0
B8 (x)=x8   4 x7 +14/3  x5 7/3 x3+ 2/3  x 1/30

On the two competing definitions of Bernoulli numbers :

With the convention adopted in Numericana (i.e.,  B1 = ½)  we have:

Bn = Bn(1)

Authors who posit that  B1 = -½   specify instead that Bn = Bn(0). Note that those two conventions only differ in the case  n = 1.

The Bernoulli polynomials are not affected by the choice of convention for Bernoulli numbers. Neither are relations between those polynomials,  like:

Bn (1 - x)   =   (-1)n Bn(x)
Bn (1 + x)   =   Bn(x)  +  n xn-1

Besides the aforementioned case  n = 1,  Bn  vanishes for odd values of  n.

The even-indexed Bernoulli numbers :   B2n  = A000367(n) /A002445(n)
B0B2B4B6B8B10B12B14
11 / 6-1 / 301 / 42-1 / 305 / 66-691 / 27307 / 6

B16B18B20B22B24
-3617 / 51043867 / 798-174611 / 330854513 / 138-236364091 / 2730

B26B28B30
8553103 / 6-23749461029 / 8708615841276005 / 14322

B32B34B36
-7709321041217 / 5102577687858367 / 6

B38B40
2929993913841559 / 6-261082718496449122051 / 13530

B42B44
1520097643918070802691 / 1806-27833269579301024235023 / 690

By the vonStaudt-Clausen theorem (1840)  the denominator of B2n  is the product of all primes  p  forwhich  p-1  divides  2n.


(2019-11-24)  

After deriving explicit formulas up to  p = 17, Johann Faulhaber observed that,   if  p = 2q+1  is odd, then the sum of the p-th powers of the integers from 0 to n  isa polynomial of degree  q+1  in the variable  x = n(n+1)/2. A related expression holds for a nonzero even  p,  namely:

n

  k 2q+1 =Fq+1(x)
If  q > 0,  then:      n

  k 2q =n+½
Vinculum
2q+1
   d
Vinculum
dx
 Fq+1(x)

That result was proved in full generality by Carl Jacobi,  in 1834.

F(x)x
F2(x)x2
F3(x)( 4 x3    x2)/ 3
F4(x)( 6 x4    4 x3  +  x2)/ 3
F5(x)( 16 x5    20 x4  +  12 x3   3 x2)/ 5
F6(x)( 16 x6    32 x5  +  34 x4   20 x3  +  5 x2)/ 3
F7(x)( 960 x7 2800 x6 + 4592 x5 4720 x4 + 2764 x3 691 x2)/ 105
F8(x)( 48 x8 192 x7 + 448 x6 704 x5 + 718 x4 420 x3 + 105 x2)/ 3
F9(x)  ( 1280 x9 6720 x8 + 21120 x7 46880 x6 + 72912 x5
74220 x4 + 43404 x3 1851 x2)/ 45  

 Come back later, we're still working on this one...


 Leonhard Euler   1707-1783 (2013-04-24)  

En(x)

 Come back later, we're still working on this one...

Relation to the Sequence of Euler Numbers :

Euler numbers can be expressed in terms of the above Euler polynomials:

En   =   2n En(½)

The Euler numbers of odd index vanish. The signs of even-indexed Euler numbers alternate.


(2021-07-15)   .
Mn(x)  is the coefficient of  t/n!  in the expansion  of  (1+t)x/ (1-t)x

Mittag-Leffler polynomials were first discussed under that name in 1940,  by Harry Bateman (1882-1946).

They obey the same binomial formula  as ordinary powers:

M0(x)=1Mn+1(x)  =  (x/2) [ Mn(x+1)+ 2 Mn(x) + Mn(x-1) ]
M1(x)=2 x
M2 (x)=4 x2
M3 (x)=4 x+8 x3
M4 (x)=32 x2+16 x4
M5 (x)=48 x+80 x3+32 x5
M6 (x)=736 x2+640 x4+64 x6
M7 (x)=1440 x+6272 x3+2240 x5+128 x7


(2021-07-20)  
The binomial polynomials form a group under umbral composition.

 Come back later, we're still working on this one...


 Carl Friedrich Gauss (2020-06-02)  
Irreducible divisors of   x n 1   over the rationals.

The  nth cyclotomic polynomial n is the unique  monic polynomial dividing x k 1   for  k = n  but not for any lesser value of  k.

When n > 1, n  is palindromic. If  n  has at most two distinct odd prime factors,  then the coefficients of n  stay within  {-1,0,1}. That holds for n < 105;  the first product of three distinct odd primes (Adolph Migotti, 1883). Those coefficients can be arbitrarily large (Issai Schur, 1931). Furthermore, any  given integer occurs as a coefficient of some cyclotomic polynomial  (Jiro Suzuki,1987).

n  is an irreducible polynomial over the rationals, whose degree is equal to the Euler totient   (n). That nontrivial fact is due to Carl F. Gauss.

The following definition also holds for  n = 0 (as an empty product  is 1).

 (x)   =    x exp( i 2k / n) 

For n > 0,  the cyclotomic polynomial n can thus be defined as the unique monicpolynomial whose roots are the primitive  nth  roots of unity.

As with any multiplicative function,  the (rarely used)  value of    at zero is  (0) = 0  (as its one-line definition  implies) which confirms 0 = 1.

0  from Maple®  (albeit with due apologies).

The First Cyclotomic Polynomials
  1  x x2x3x4x5x6x7x8x910111213141516171819202122
(x)1
(x)-11
(x)11
(x)111
(x)101
(x)11111
(x)1-11
(x)1111111
(x)10001
(x)1001001
10 (x)1-11-11
11 (x)1111111111
12 (x)10-101
13 (x)111111111111
14 (x)1-11-11-11
15 (x)1-101-110-11
16 (x)100000001
17 (x)11111111111111111
18 (x)100-1001
19 (x)1111111111111111111
20 (x)10-1010-10-1
21 (x)1-101-1010-110-11
22 (x)1-11-11-11-11-11
23 (x)11111111111111111111111
24 (x)1000-10001
25 (x)100001000010000100001
26 (x)1-11-11-11-11-11-11
27 (x)1000000001000000001
28 (x)10-1010-1010-101
  1  x x2x3x4x5x6x7x8x910111213141516171819202122

The following factorization yields as many factors as there are divisors of n:

 xn 1   =   k(x)

The following interesting equation involves the Möbius function  :

 n(x)   =    ( xn/k 1 ) (k)


 Gerard Michon (2020-06-03)  
Nontrivial factors of   (p x2) p 1  when  p  is an odd prime.

A polynomial  Pp  can be defined for which the following identity holds, which provides a nontrivial factorization  of some special integers:

( p x2) p (-1)m   =  ( p x2 (-1)m)  Pp(-x)  Pp(x)

Here,  p = 2m+1  is an odd prime (see Sophie Germain identity  for p=2).
P(x)   =   Ap( p x2)  +  (p x) Bp( p x2)  where  Ap  and  Bp  are both palindromic monic  polynomials. Ap  hasdegree  m.   Bp  has degree m-1.

Polynomials  Pp(x) = Ap(y) + (p x) Bp(y)   with   y = p x 2
 Prime p 1  y y2y3y4y5y6y7y8y9y10y11y12y13y14y15
+p=3A11
B1
p=5A131
B11
+p=7A1331
B111
+p=11A15-1-151
B11-111
p=13A1715191571
B135531
p=17A1911-5-15-51191
B131-3-3131
+p=19A1917273131271791
B135777531
+p=23A1119-19-152525-15-199111
B13-1-5171-5-131
p=29A1153313155745194557151333151
B1551711551171551
+p=31A11543831251511691731731691511258343151
B15111925293131312925191151

For p=31 (and x=9) this factors a nice 102-digit semiprime:   (251131+1) / 2512  =  889923919072997985238634558820908333948499157179463
× 1111413273683146858652465162019244587926917356315577

That factorization would take a long time with a general-purpose  program.

For compactness, we'll give palindromic polynomials as lists of coefficientswith underlined central ones  (so the mirror endings can be freely truncated).

=(1, 19, 79, 183, 285, 349, 397, 477, 579,627, 579, 477, 397, 349, 285, 183, 79, 19, 1)
B37 =(1, 7, 21, 39, 53, 61, 71, 87,101,101, 87, 71, 61, 53, 39, 21, 7, 1)
 
A41 =(1, 21, 67, 49, 7, 35, 15, 11, -23, -65,-31, -65, -23, 11, 15, 35, 7, 49, 67, 21, 1)
B41 =(1, 7, 11, 3, 3, 5, 1, 1, -9,-7,-7, -9, 1, 1, 5, 3, 3, 11, 7, 1)
 
A43+ =(1, 21, 81, 169, 223, 225, 213, 223, 229, 197,159,159, 197, 229, 223, 213, 225, 223, 169...
B43+ =(1, 7, 19, 31, 35, 33, 33, 35, 33, 27,23, 27, 33, 35, 33, 33, 35, 31, 19, 7, 1)
 
A47+ = (1, 23, 65, -15, -169, -97, 179, 287, -37, -375, -149,311,311, -149, -375, -37, 287, 179...
B47+ = (1, 7, 7, -15, -25, 5, 41, 25, -37, -49, 15,57, 15, -49, -37, 25, 41, 5, -25, -15, 7, 7, 1)
 
A53 = (1, 27, 113, 103, -155, -219, 263, 513, -59, -465, 75, 551, 93,-357,93, 551, 75, -465, -59...
B53 = (1, 9, 19, -1, -35, -3, 67, 41, -51, -39, 57, 57,-31,-31, 57, 57, -39, -51, 41, 67, -3, -35, -1...
 
A59+ = (1, 29, 111, 55, -85, 47, 11, 53, 131, -245, 41, 103, -111, 227,-103,-103, 227, -111, 103...
B59+ = (1, 9, 15, -5, -5, 9, -3, 21, -9, -25, 25, -11, 9, 19,-31,19, 9, -11, 25, -25, -9, 21, -3, 9, -5, -5...
 
A61 = (1,31,191,637,1541,2979,4881,7029,9125,10953,12397,13511,14379,15053,15511,15667...
B61 = (1, 11, 47, 131, 281, 497, 761, 1037, 1291, 1501, 1663, 1789, 1887, 1961,2001,2001...
 
A67+ = (1,33,193,565,1055,1429,1599,1803,2225,2637,2617,2195,1869,1875,1865,1469,991,991...
B67+ = (1, 43, 99, 155, 187, 205, 243, 301, 329, 297, 243, 225, 233, 209, 147,111, 147, 209, 233...
 
A71+ = (1, 35, 169, 155, -109, 233, 597, 39, 101, 445, 163, 293, 89, -203, 249, -49, -505,37,37...
B71+ = (1, 11, 25, 1, -5, 63, 43, -9, 43, 37, 21, 35, -19, 1, 29, -47, -35,23,-35, -47, 29, 1, -19, 35...

Those are linked to cyclotomic polynomials  via the following equality:

(p x2)p 1   =   ( p x2 1) [ Ap(p x2)2  p2x2  Bp(p x2)2]

As a polynomial identity,  that's equivalent  (using  y = p x2) to a simpler relation  (albeit not directly applicable to integer factorization):

yp 1   =   (y 1) [ Ap(y)2 (p y) Bp(y)2]   (with  1 = (-1)(p+1)/2)


(2020-10-20)  
Manufacturing remarkable identities.

Clearly,   x5 + x4 + x3 + x2 + x + 1     =   x3 (x2 + x + 1) + x2 + x + 1
=(x3 + 1) (x2 + x + 1)

This can be used to factor   x5 + x4 + 1   :

x5 + x4 + 1     =   x5 + x4 + x3 + x2 + x + 1 x (x2 + x + 1)
=(x3 x + 1) (x2 + x + 1)

My first quintic equation (10:28) by Steve Chow  (blackpenredpen, 2020-06-03).

border
border
visits since February 15, 2012
 (c) Copyright 2000-2021, Gerard P. Michon, Ph.D.

[8]ページ先頭

©2009-2025 Movatter.jp