Movatterモバイル変換


[0]ホーム

URL:


 border
 border

Number Theory

God created the integers, all else is the work of man.
Leopold Kronecker (1823-1891)

Articles previously on this page:

 border
 border
 Michon

See also:

Related Links (Outside this Site)

Mathematics Enrichment | NRICH Prime Site | Plus Magazine | Math Mojo
What's Special About This Number? byErich Friedman of Stetson University.
Conjectures atThe Prime Puzzles& Problems Connection, by Carlos Rivera.
The Half-Totient Tree byKevin Brown (1995-02-03)
Bézout's Identity for Gaussian Integers  by Larry Freeman.
Arithmetic Progressions of Three Squares  by Keith Conrad.
 
border
border

Arithmetic  and  Number  Theory


dottcomguy00(2001-03-21)
Is 1 a prime number?   (ModernA000040  vs.obsoleteA008578.)

No, 1 is not prime.  This fact turns out to bemore than a mere "technicality":

The moderndefinition of primality is that"a prime number is a positive integer with exactly two positive divisors".However, this may seem unconvincing (and/or arbitrary) by itself,until you stop to consider why we define things the way we do in mathematics,physics or other sciences.A relevant quote from Henri Poincaré has been given a superb conciseEnglish translation byJohn A. Wheeler, namely:

Time is defined so that motion looks simple.

Good mathematical definitions are designed to make theorems simpler to stateand easier to use. We exclude "1" from the realm of prime numbersmerely because almost all properties involving prime numbers,divisibility and factorizations would be more awkward to state if we didn't.

Consider just one essential example: "Every positive number has a unique factorization into primes". This would not be true if "1" was considered prime since you could add any number of"1" factors to (other) primes and obtain a product with the same value.

Even "1" has a unique factorization into primes,namely the "empty product" which contains no factors and is therefore equal to the neutral element for multiplication. (Why is anempty product equal to one?  Why is anempty sum equal to zero?Well, the same principle applies:  Any other definition would crippleMathematical discourse with dubious "special cases".)

Historically, some number theorists did list "1" as a prime (e.g.,D.N. Lehmer, the father of D.H. Lehmer, in 1914). Some older textbooks also took this deprecated view. This goes to show that it's not totally impossible to adopt other conventions... However, such alternate definitions have proven to befar more awkward to use,and that's why we got rid of them: 1 is not prime.  Period.

On 2004-06-14,Edgar Bonetwrote:       [edited summary]
Regardless of what's currently accepted for positive integers,wouldn't it be more natural to call "prime"anything that does not have a non-trivial factor within a given set?
 
For example, the invertiblepolynomials[with real coefficients] are thenonzero constants (the polynomials of degree zero) which I'd like to call"prime", along with the polynomials of degree 1and those polynomials of degree 2 which have no real roots.
Edgar Bonet,Physicist

What you're describing are, in fact, the irreducible elements of aring;those which cannot be expressed as a non-trivial product(a product of two factors being considered trivial if at least one of themis a unit  of the ring).

The concept ofirreducibility is more generally applicable than the conceptof  primality,  which is restricted to those rings where factorizationsinto irreducible elements are essentially unique  (which is to say that,in two such factorizations, every factor of one equals some factor of the othermultiplied by an invertible element of the ring). One example where factorizations arenot unique is the set ofcomplex numbersof the form a + ib5,wherea andb are integers. In this, the number  6  has two unrelated factorizations into irreducible factors:

6   =   2 3  =   (1 +i5)(1i5)

There are onlynine discrete "grids" of complex numbers where factorizationsare unique (related to the nineHeegnernumbers:  1, 2, 3, 7, 11, 19, 43, 67 and 163)  most notablytheGaussian integers and theEisenstein integers.

In those cases where factorizations can be shown to be unique in the above sense,the term "prime" is often restricted to those irreducible elements whichare not invertible and have somead hoc additional featurewhich ensures factorization unicity.  (We keep as primes onlypositive numbersin the case of integers, or polynomialswith leading coefficientsequal to 1 in the case of polynomials.) In this context, invertible elements are commonly called "units". "Units" and "primes" play totally different roles in this general scheme.

+1 and -1 are units;  they are notprimes.


(2002-06-16)
Is "composite" the opposite of "prime" ?

No it's not, although it comes close. Even in the realm of positive integers the number 1 is neither compositenor prime (seeprevious article). The onlynatural integerswhich are neither prime nor composite are  0  and  1.

The term "irreducible" is favored todenote something that'snot composite, but it's prudent to state exactlywhat you have in mind just before you use it for the first time in a speech or a text. The ugly adjective "noncomposite" could be another option, which does not needprior explanations...

"Rectangular Number"  is a deprectaed term :

In Number Theory,  the deprecated term rectangular was sometimes used as synonymous for composite  in the above sense.

However, Rectangular numbers  were also sometimes understood to denote products of two consecutive  integers, which were of special interest to the ancient, along with their halves called triangular numbers,  a term we still usefor integers of the form  n(n-1)/2.


Anonymous query, via Google   (2004-11-05)
What two prime numbers add up to their product?

As each prime divides the sum of both, it must divide the other. This is only possible if the two primes are equal to some number p.  Adam Ries  (1492-1559) The sum and the product being both equal to 2p, we must have   p = 2.

2 + 2   =   2 2


(2002-06-14)  
How does the concept of primality generalize beyond ordinary integers?

 Carl Friedrich Gauss (1777-1855)The so-calledGaussian integers  arecomplex numbers of the form a+ib,  wherea andb are integers.

Gauss showed that every Gaussian integer uniquely  decomposes into a unit  (one of the four invertibleelements +1, -1, +i, -i ) and a product of irreducible elements fromthe positive  quarter of the complex plane, calling a Gaussian integer  x+iy positive  when  -x < y < x+1 .

This is entirely analoguous to the FundamentalTheorem of Arithmetic  whereby every ordinary integer is a productof an invertible unit  (namely,  its sign;  +1 or -1) and a unique decomposition of positive  primes.

Smallest(Positive) Gaussian Primes
1+i, 2+i, 2-i, 3, 3+2i, 3-2i, 4+i, 4-i, 5+2i, 5-2i, 6+i, 6-i, 5+4i, 5-4i, 7, 7+2i ...

Note that  1+i  is the onlypositive Gaussian prime whose conjugateis not apositive Gaussian prime as well (since  1-i = (-i)(1+i)  isn'tpositive).

Ordinary prime integers are not necessarilyprime among Gaussian integers. Actually, a prime integer is a Gaussian prime if and only if it's congruentto 3modulo 4.  In particular,2 and 5 are not Gaussian primes:

2   =   -i (1+i)2         5   =   (2+i) (2-i)

Note that the above factorization of 2 (involving the "unit" -i)  is indeed the proper "unique" one, since themore obvious factorization  (1+i)(1-i) uses a Gaussian integer which is notpositive in the above sense...


AlisonWonder(2002-06-23)
How do you find the lowest common multiple (LCM)
of 3, 7, 24, 86, 125 and 214 ?

Small numbers like these are easily factored into primes:

3 and 7 are prime.  24 is 233. 86 is 243.  125 is 53. 214 is 2107.

The factorization of their least common multiple (LCM) is obtained by using for each primethe highest exponent that appears in each of the above factorizations. The result is, therefore:

LCM ( 3, 7, 24, 86, 125, 214 )   =  23 3 53 7 43 107   =   96621000

Factoring large numbers is often very difficult,so it's not a realistic option. (In fact some modern schemes inpublic key cryptography do rely on the factthat it's difficult to retrieve two large prime numbers from their product.)

To find the least common multiple (LCM) of two  large numbers, compute their greatest common divisor (GCD)usingEuclid's algorithm(or related algorithms that are similarly efficient). You may then use the relation:

LCM(a,b)   =   ( a b ) / GCD(a,b)

Given huge numbers like:

       a = 2562047788015215500854906332309589561       b = 6795454494268282920431565661684282819

The above formula allows you to "easily" compute the LCM of a and b:

15669251240038298262232125175172002594731206081193527869
Note:

vorobya(Alexey Vorobyov.2002-10-18)  
Prove that   n4 + 4   is composite (i.e., not prime) for all  n 1

Well,  n4 + 4   =   (n2 - 2n + 2) (n2 + 2n + 2)  is a proper factorization, since the smaller of the two factors is greater than  1  when n  1.

That's a special case of the so-called Sophie Germain identity :

4a4  + b4  =  ( 2a2 2ab +b2) ( 2a2 + 2ab +b2)

A similar identity shows that   n6 + 27   is neither prime nor semiprime:

27a6  + b6  =  ( 3a2 3ab +b2) ( 3a2 +b2) ( 3a2 + 3ab +b2)

This type of factorization is often called Aurifeuillian  (sometimes also spelledAurifeuillean) in honor of the French mathematician  [Léon François] Antoine Aurifeuille  (1822-1882;X1841) whose factorization methods were applied by Henri Le Lasseur de Ranzay (an enthusiastic amateur who ownedthe Château du Bois-Hue  in Saint-Joseph du Portricq,near Nantes).  Le Lasseur routinely shared his factorizations withEdouard Lucas (1842-1891)  and Eugène Catalan (1814-1894; X1833). Another amateur of that era was Charles Henry Gauss (1845-1913) grandson of the great Carl Gauss (1777-1855).

Aurifeuille  once earned a living teaching high-school mathematicsinToulouse. and authored three mathematical textbooks as L. Aurifeuille :

  • Cours de géométrie élémentaire,  with C. Richaud  (1847).
  • Traité d'arithmétique,  with C. Dumont  (1859).
  • Traité de géométrie élémentaire,  with C. Dumont  (1860).

With b = 1,  the above identities can be used to break up 22(2n+1) +1  and  33(2n+1) +1  into two or three nearly equal  factors :

22(2n+1)  + 1   =   (22n+1 2n+1 + 1) (22n+1 + 2n+1 + 1)
33(2n+1)  + 1   =   (32n+1 3n+1 + 1) (32n+1 + 1) (32n+1 + 3n+1 + 1)

In 1871, Aurifeuille himself used the first of those (with n = 14) to obtain immediately the following celebrated factorization:

258 + 1   =   536838145 . 536903681

The second number is prime. The first one factors as   5 . 107367629

That very factorization had been painstakingly  obtainedby the retired Parisian mathematician Fortuné Landry(1798-1895)  after casting out the factor  5. Summarizing his factorizations in 1869, Landry wrote:

1gave as much trouble and labor as that of 258 + 1
 
This number is divisible by 5; if we remove this factor,we obtain a number of 17 digits whose factors have 9 digits each. If we lose this result, we shall lack the patience and courage to repeat all calculationsthat we have made and it is possible that many years will pass before someone elsewill discover the factorization of 258 + 1

On July 12, 1880, the 82-year old Landry earned a permanent spotin the history of numbers by presenting his factorizationof the sixth Fermat number, without saying how he did it (there's no Aurifeuillian shortcut):

F6   =   2 64 + 1   =   274177 . 67280421310721

The primality of the second factor was subsequently proved by Edouard Lucas (1842-1891). Besides Mersenne primes, that 14-digit number is the largest prime ever discovered without the help of a computer.


 Gerard Michon (2020-05-28)    Factorizations
Here are some algebraic factorizations, amongmany others.

a2b2    =    (ab )  (a +b )
a3b3    =    (ab ) (a2 +ab +b2 )
a3 +b3    =    (a +b ) (a2ab +b2 )
( 2a2) 2  + b4=( 2a2 2ab +b2) ( 2a2 + 2ab +b2)
( 3a2) 3  + b6=( 3a2 3ab +b2) ( 3a2 +b2) ( 3a2 + 3ab +b2)
( 5a2) 5   b10=( 5a2b2) ( 25a4 25a3b+ 15a2b2 5ab3 +b4)
( 25a4 + 25a3b+ 15a2b2 + 5ab3 +b4)
( 7a2) 7  + b14=( 7a2 +b2) ×
( 73a6 73a5b+ 3×72a4b2 72a3b3+ 3×7a2b4 7ab5+b6)
( 73a8 + 73a7b+ 3×72a4b2 + 72a3b3+ 3×7a2b4 + 7ab5+b6)
a18   b18=(ab )  (a +b ) ×
(a2ab +b2) (a6 +a3b3 +b6)
(a2 +ab +b2) (a6a3b3 +b6)
( 11a2)11  + b22=( 11a2 +b2) ×
115a9b+5×114a8b2114a7b3113a6b4113a5b5112a4b6112a3b7+5×11a2b811ab9+b10)
(115a10+115a9b+5×114a8b2+114a7b3113a6b4113a5b5112a4b6+112a3b7+5×11a2b8+11ab9+b10)
( 13 x2)13    1=( 13 x2 1 ) ×
13x(1 x(7 13x(3 x(15 13x(5 x(19 13x(5 x(15 13x(3 x(7 13x(1 x))))))))))))
x 15  +  1=( x + 1 ) × (x2 x + 1) ×(x4 x3+ x2 x + 1) ×
(x8+ x7x5 x4 x3+ x + 1 )

With a = 11,  one of the above says that (1133 + b22/ (113+b2) splits into two large  factors (bothprime when b = 23). It's divisible by  23  when  n  isn't (courtesy of Fermat'slittle theorem,  since  1133  equals -1 modulo 23) unless  b  is 7 or 16 modulo 23  (as the denominator is then a multiple of 23).

( 1133 + 2322)/ ( 113 + 232)   =   526636296123323 × 23711108297379757

It's typographically simpler to express such identities in terms of the ratio x = a/b.  Large values of  x  (in particularwith b = 1)  yield very even splitsinto two factors which are occasionally  prime.  For example:

(17172434 1) /  (17×242 1)   =  81077141422755792907751304373417
× 88122823335010249161498758966233

Those two factors are respectively  P17(-24)  and  P17(24)  where:
P17(x)   =   A17( 17 x2)  +  (17 x) B17( 17 x2)   with
A17(y)   =   1 + y (9 + y (11 + y (-5 + y (-15 + y (-5 + y (11 + y (9 + y)))))))
B17(y)   =   1 + y (3 + y (1 + y (-3 + y (-3 + y (1 + y (3 + y))))))

Likewise,   (19x2)19+ 1   =   (19x2+ 1) P19(-x)  P19(x)   where:
P19(x)   =   A19( 19 x2)  +  (19 x) B19( 19 x2)   with
A19(y)   =   1+y (9+y (17+y (27+y (31+y (31+y (27+y (17+y (9+y))))))))
B19(y)   =   1+y (3+y (5+y (7+y (7+y (7+y (5+y (3+y)))))))

Tiny values of  x  (in particularwith a = 1)  also yield even splits, but certain intermediate values of the ratio a/b  can give very lopsided results.


(2006-02-05)  
Euclid's Algorithm gives the greatest common divisor  dof two integers  p and q, and also yields two integersu and v such that  up + vq = d.

In the so-calledEuclidean division of two positive integers (thedividend  n  and  the divisor  p) thequotient  q  is the largest integer which goes p timesinto n. This leaves a nonnegativeremainder  r  less than p. In other words:

n   =   p q  +  r      ( 0 r < p )

Euclid's Algorithm is an iterative procedure based on the remarkthat any common factor of n and p is also a common factor of p and r. Until r vanishes,we may perform simpler and simpler divisions where the divisor and remainder of one become the dividend and divisor of the next... The last divisor (or last nonzero remainder)is then thegreatest common divisor (GCD)of the original two numbers.  Here's how Euclid's algorithm yields 3 as the GCDof 5556 and 1233:

5556 = 1233 . 4 + 624
1233 = 624 . 1 + 609
624 = 609 . 1 + 15
609 = 15 . 40 + 9
15 = 9 . 1 + 6
9 = 6 . 1 +  3 
6 =  3  . 2 + 0

An important remark (expandedbelow) is thatwe may express the resultinggreatest common divisoras a linear combination of the original two numbersby tracing back the steps in Euclid's algorithm (proving Bézout's lemma).

Subtractive Version of Euclid's Algorithm (anthyphairesis) :

The GCD of two integers may also be worked out by repeatedly replacingthe larger of them by the difference  of the two. This simpler version of Euclid's algorithm is less efficient than the usual one described above  (using Euclidean divisionrather than mere subtraction)  but it can be convenientin proofs and other theoretical arguments (seebelow).


(2006-02-05)  
Thegreatest common divisor (d) of two integers (p and q) isa linear combination of them:  d = up + vq  (where u and v are integers).

The canonical solution is obtained by tracing back the steps ofEuclid's algorithm which compute theGCD of p and q.  With the above example (p=5556, q=1233):

3 =   (1)    9 +  (-1)   6 =   (1)    9 -     (  15 -      9)  =  (-1)   15 +   (2)   9 =  (-1)   15 +   2 ( 609 - 40. 15)  =   (2)  609 + (-81)  15 =   (2)  609 -  81 ( 624 -    609)  = (-81)  624 +  (83) 609 = (-81)  624 +  83 (1233 -    624)  =  (83) 1233 +(-164) 624 =  (83) 1233 - 164 (5556 - 4.1233)  =(-164) 5556 + (739) 1233

Note that  u  and  v  are not uniquely defined by Bézout's identity, since:

u p  +  v q   =   (u+kq) p  +  (v-kp) q

However,  the pair obtained from the above procedure is well-defined:

Bézout Coefficients and Bézout Function : 

A careful backtrack of Euclid's algorithm yieldsthe definition of a unique  function of two variableswhich gives the so-called Bézout coefficients  (u and v) without  the aforementioned ambiguity as the simplest  possible solution.  Formally, sucha function satisfies the following nice  identity, unless |x|=|y|.

x bezout(x,y)  +  y bezout(y,x)   =   gcd(x,y)  ≥ 0

To make this hold in all cases, we'd have to put:  bezout (x, x) = ½ sign(x). (For the sake of expediency,  we've retained bezout (x, x) = 0   instead.)

Forsaking thatad hoc exception,
here's how to define bezout on
a TI-92, TI-89 orVoyage 200.
 

 
bezout(x,y)FuncIf x<0 : Return -bezout(-x,y)Local u,v,q,tabs(y)y : 1u : 0vWhile y0  mod(x,y)t  (x-t)/yq  yx : ty  u-qvt : vu : tvEndWhileu : EndFunc
bezout(x,y)
 

Note that bezout  is odd for one argumentand even for the other:

bezout(-x,y)  =  - bezout(x,y)         bezout(x,-y)  =  bezout(x,y)

The above algorithm remains valid when the arguments of bezout  are not integers  (because the same is true ofthe mod  function which it uses). Luckily, this is consistent with the generalizedGCD function presented in thenext article.

OnHewlett-Packard calculators  (HP-49g+, HP-50g) the above bezout  function for integerscan simply be given the following definition:

«  IEGCD   ROT   DROP2  »

The acronym  IEGCD  (probably)  stands for Integer Euclid Greatest Common Divisor  [Algorithm ] which gives a clue that the result is indeed precisely what the abovedescribes However, the terse wording of HP's technical documentation would, by itself,merely tell that the above three-instruction program yields what we need modulo y.

Bézout's Lemma in the Language of Rings and Ideals :

mZ + nZ    =    GCD(m,n)Z

The above expression may serve as a good introduction to the universally accepted conventionintroduced by Hermann Minkowski (1864-1909) whereby an operator defined for two elements is also defined when either formal operandis a set  of such elements  (or when both are). The result is then the set of all possible operations between an element from the firstformal operand and an element from the second one.  Those things are called Minkowski sumsMinkowski products  or Minkowski operations.

Thus, n Z is the set of all multiples of the integer  n. Likewise,  he sum on the left-hand-side is the set of all sums where one addend  is a multiple of  m  and the otheris a multiple of  n. Bézout's lemma  states that those sums are precisely the multiples ofthe greatest common divisor  of  m  and  n.


(2007-05-07)  
Extending the definition of a GCD beyond the realm of integers.

The greatest common divisor  (GCD)  normally definedamong integers (as computed byEuclid's algorithm)has two fundamental properties:

  • gcd ( xp , xq )   =   x gcd(p,q)
  • x / gcd(x,y)   and   y / gcd(x,y)   aretwocoprime integers

Both properties are retained by defining the GCD of two fractions as the GCD of theirnumerators divided by theLCM of their denominators. Software packages which support exact rational arithmetic (in advancedhandheld calculatorsand elsewhere)  normally use this definition toextend the range of their GCD function beyond integers. Rightly so...

gcd (2/3 ,1/2 )  =  1/6

This allows the GCD of twocommensurablenumbers to be defined as well:  Two real numbers arecommensurableiff they are proportional to two integers; Their GCD is simply the GCD of those integers multiplied by the common scaling factor.

gcd (2/3 ,/2 )  =  /6

The GCD of two numbers that are not  commensurable isbest defined to be zero. This makes the second fundamental property listed above fail gracefully  (as it would entail forbidden  divisionsby zero). With this convention, the celebrated irrationalityof  2  can be stated compactly. So can theepitaph of Roger Apéry (the irrationality ofApéry's constant).

gcd ( 1 , 2 )   =   0
gcd ( 1 , (3) )   =   0

clue  of theincommensurability of two numbers  x  and  y may take the form of a small upper bound on their GCD.  Something like:

gcd ( x , y )   <   = 10-100


Otisbink(2002-04-02
How can I find integer solutions of a linear equation?
For example, (1,4) and (3,1) are integer solutions of   3x + 2y = 11.
How about a harder one like   1024 x - 15625 y  =  8404 ?

There are infinitely many integer solutions of   3x + 2y = 11 (two of them in positive  integers). They can be indexed by an integer n  Z :

xn   =   1  +  2 n
yn   =   4    3 n

Any such equation whose unknown variables are required to be integers is calleda  Diophantine equation (as they were much studied by Diophantus of Alexandria, who died at the age of 84 around AD 284). Here's how to solve for  x  and  y  any linear  Diophantine equation,  like:

ax  + by   =  c

First, compute the Greatest Common Divisor (GCD) d  of a  and b, usingEuclid's Algorithm. In the process, you will obtain two integers u and vsuch that au +bv =d (as explainedabove, the existence of such a pair of integers is a result commonly known asBezout's lemma).

We have  a =da'   and b =db' , wherea' andb'arerelatively prime.

Since the LHS of the equation is divisible byd, the RHS must be also. Therefore,d must dividec, or else the equation has no integer solutions. Let's assume, then, that c  is equal to dc'. Using the above expression ford, the original equation  [divided by d] may be rewritten as follows:

a' x +b' y   =   (a' u +b' v)c'      or      a' (x-uc') +b' (y-vc')   = 0

Therefore,b' divides the producta' (x-uc').Sinceb' anda' arecoprime,b' must divide(x-uc'). In other words, there exists an integer k such that x is given by the first equationof the following pair.  The second equation,  giving y,  is obtained bysubstituting that value of x in the original equation:

x   =   uc' + kb'
y   =   vc' - ka'

All solutions are thus explicitly given in terms of an arbitrary integer  k  Done!

In the proposed example, a = 1024, b = -15625, c = 8404.  So, we have:

d = gcd(a,b) = 1     therefore a' =a ,  b' =b ,  c' =c
u =bezout (a,b) = -4776    and    v =bezout (b,a) = -313

The above givesall the integer solutions of   1024 x - 15625 y  =  8404  in terms of a single integer parameter  k :

x   =   uc' + kb'   =   -40137504 - 15625 k
y   =   vc' - ka'   =   -2630452 - 1024 k

To make the constants as small as possible, we introduce  n = -2569 - k. This way, we obtain canonical  formulas where nonnegative solutionsfor  x  and  y  correspond to nonnegative values of the parameter  n:

x   =   3121 + 15625 n
y   =   204 + 1024 n

Indeed:   1024 ( 3121 + 15625 n )   15625 ( 204 + 1024 n )   =   8404

Before negative numbers became commonplace (in theRenaissance) most ancient mathematicians were ultimately interested only in nonnegative solutions to this type of puzzles. To us nowadays,  this can be disposed of quickly at the end, in the form of an afterthought (as we did above).  To them,  it would have been a burden to devise a sequenceof steps where a greater number was never subtracted from a smaller one.

When devising recreational puzzles,  it can be amusing to engineer linear Diophantineequations which have only one positive solution. To do so,  start with canonical solution formulas which clearly give negativesolutions for any nonzero value of the parameter  n  andwork your way backward to eliminate  n  and obtain a linearequation which encodes a unique pair of nonnegative integers.


(2006-02-03)     (Pythagorean Triplets)
Solutions, incoprime positive integers, to the equation  x2 + y2 = z2 

Such integers  x,y,z  are the sides of a right triangle. The smallest solution is common knowledge:  x=3, y=4, z=5. It turns out that all coprime solutions are ofthe following form  (the special case v=1 was given byArchimedes).

( u2-v2) 2  + (2uv) 2   =  ( u2+v2) 2

x and y can't both be odd  (otherwise, the sum of their squares would be 2 modulo 4, which can't be a square). So, one of them must be even. WLG, we may thus assume that y is even. Let  y = 2a :

4a 2   =   (z+x) (z-x)

The positive integers ½(z+x) and ½(z-x) are coprime (or else the sum and the difference, z and x, wouldn't be coprime).  As their product is a square  (a2) both of them are. So, there are two integers  u  and  v  such that:

z+x  =  2u2   and   z-x  =  2v2,  which implies   y2  =  (2uv)2   QED

Conversely, the above yieldscoprime solutions whenever u and v are coprime,without being both  odd... Below are the smallest  such coprime solutions (arguably, the trivial solution  y = 0,  does belong here).

 x  1  3 51572135945113363551377
y041282420124028605616488436
z1513172529374153616565738585

Babylonian clay tablets featuring lists of such Pythagorean triples (not necessarily coprime) rank among theearliest mathematics on record.

  • A009003 Hypothenuse numbers:  5, 10, 13, 15, 17, 20, 25, 26, 29, 30, 34, 35, 37, 39, 40, 41, 45, 50, 51, 52, 53, 55,58, 60, 61, 65, 68 ...
  • A009177 Hypothenuses of more than one triplet:  25, 50, 65, 75, 85, 100, 125, 130, 145, 150, 169, 170, 175, 185, 195, 200, 205, 221 ...

4 nontrivial triangles have integer sides and hypothenuse 65 (resp. 85) :

65 2  =   63 +  16 2  =   60 +  25 2  =   56 +  33 2  =   52 +  39 2
85 2  =   84 +  13 2  =   77 +  36 2  =   75 +  40 2  =   68 +  51 2

1105 is the hypothenuse of 13 distinct nontrivial Pythagorean triplets:

1105 2  =   1104 +  47 2  =   1100 +  105 2  =   1092 +  169 2
  =   1073 +  264 2  =   1071 +  272 2  =   1020 +  425 2
  =   1001 +  468 2  =   975 +  520 2  =   952 +  561 2
  =   943 +  576 2  =   884 +  663 2  =   855 +  700 2  =   817 +  744 2

Smallest hypothenuse of at least  N distinct Pythagorean triples
N123,45,6,78,9 ... 1314,15 ... 2223, 24 ... 3132, 33 ... 40
A08895952565325110555252762532045

The numbers that are expressible in many ways as sums of two squares (A016032) enjoy an unfair advantage  in the above record-breaking game.


(Joe of Ann Arbor, MI.2000-10-24)
What numbers have exactly  6 proper divisors ?  [Aproper divisor is a positive integer less than  the dividend which divides evenly into it.]

Consider the factorization into primes of the numberN = AaBbCc...

When it comes to counting the number of divisors(for the time being let's count both 1 and N as divisors),only the sequence of exponents a,b,c,... matters(not the sequence of prime factors A,B,C,...).To get a divisor of N you should pick one exponent for the first prime among the(a+1) integers from 0 to a, one exponent for the second prime among the (b+1)integers between 0 and b, etc.

So, thetotal number of positive divisors of N is(a+1)(b+1)(c+1)...

If you want the number N to have exactly 6 proper divisors (counting 1 but excluding itself)the product (a+1)(b+1)... should be equal to 7.As 7 is prime this means the product in question only has one factor,so that you must have a=6 and nothing else.The number in questionmust be the sixth power of a prime.The first of these are 64, 729, 15625, 117649, 1771561, 4826809 ...A030516.

It is worth pointing out that the term "proper divisor" may exclude 1 as well as N.If you use this convention, the product (a+1)(b+1)... should be equal to 8.This corresponds to only 3 possible alternatives:

  1. N is the product of 3 distinct primes.
  2. N is the product of a prime by the cube of another prime.
  3. N is the seventh power of a prime.
There are a lot more solutions this time:
  1. The first class of solutions starts with etc.
  2. The second class starts with etc.
  3. The third class is the sequence of seventh powers of primes:128, 2187, 78125, 823543, etc.
The combined list is therefore: 24, 30, 40, 42, 54, 56, 66, 70, 78, 88,102, 104, 105, 110, 114, 128, 130, 135, 136, 138, 152, 154, 165, 170 ...A030626.

(On a related topic, you may want to exercise your programming talents by efficiently  generating in increasing orderthe products of 3 distinct elements from a given list of increasing integers.)


(2010-01-25) 
The only positive integers witn an odd  number of positive divisors.

With the notations introduced in theprevious section, the totalnumber of the positive divisors of N = AaBbCc...  is:  (1+a) (1+b) (1+c) ...

This product is odd  only when all its factors are, which is to say that all multiplicities (a, b, c...)  are even.  This happensiff  N  is a perfect square.


Anonymous query, via Google (2010-10-09) 
For what numbers is the product of all divisors a perfect square?

If  p  is a prime factor of  N, then  N = pQ where  Q  iscoprime with  p (k is the multiplicity  of p in N). Let  m  be the number of divisors of  Q.

The number of divisors of  N  is  d = (1+k) m. Exactly  m  of those are divisible by  p  with any prescribedmultiplicity between 0 and k.  Therefore,the multiplicity of  p  in theproduct of all the divisors of  N  is:

m.0 + m.1 + m.2 + ... + m.k   =   m k (k+1) / 2  =   kd / 2

The product of all the divisors of  N  is thus a perfect squareif and only if all such quantities are even, which is to say that  kd  is a multiple of 4 for the multiplicity k  of every prime factor of  N.

If d is odd  (whichmeans that N is a perfect square) then the above is only satisfied when every multiplicity  k  isa multiple of 4, which is to say that  N  itself is a fourth power.

If d is singly even (which happens when one prime factor has a multiplicity congruentto 1 modulo 4 while all the others have even multiplicities) then the above condition fails for the factor with odd multiplicity.

When d is a multiple of 4, the above condition clearly holds. This happens when N has at least two prime factors with odd multiplicitiesor one factor with multiplicity congruentto 3modulo 4 (as k+1 is divisible by 4, so is d).


All told, the product of all the divisors of  N is a perfect square if and only if one of the following three conditions holds:

  • N is a fourth power.
  • N has at least two prime factors with odd multiplicities.
  • N has a prime factor with a multiplicity congruentto 3modulo 4.

1, 6, 8, 10, 14, 15, 16, 21, 22, 24, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 46, 51, 54, 55, 56, 57, 58, 60, 62, 65, 66, 69, 70, 72, 74, 77, 78, 81, 82, 84, 85,86, 87, 88, 90, 91, 93, 94, 95, 96, 102, 104, 105, 106, 108, 110, 111, 114, 115,118, 119, 120, 122, 123, 125, 126, 128, 129, 130 ...  (A048943)


(J.E. of Lubbock, TX.2000-10-25)  
Aperfectnumber is a number whose divisors add up to itself: 1+2+3=6 1+2+4+7+14=28. After 6 and 28, what are the next perfect numbers?
(n)ofall the divisors of nhas the desirable property of beingmultiplicative(which is to say that(pq) = (p)(q), whenever p and q arecoprime). A perfect number may thus (also) be defined as an integer n such that (n) = 2n.
     The factorization into primes of any number n consists ofrelatively prime factors of thetype pm (p is prime and m is itsmultiplicityin the factorization);(n)/n is the product of thefactors(pm+1-1)/(pm+1-p). The integer n is a perfect number if and only if this product equals 2.

Only the first four perfect numbers (6, 28, 496 and 8128) were known toNicomachus of Gerasa (c.AD 60-120 ;Gerasa is nowJerash, Jordan). Nicomachus discusses the topic in his Arithmetike Eisagoge  ("Introduction to Arithmetic",  c. 100) an influential work which includes multiplication tablesand the earliest known use of Arabic numerals (Indiandecimal numeration) outside of India. Nichomachus was the first to deal with Arithmetic independently from geometry,but his work is far less rigorous than what Euclid had done 4 centuries earlier. Some of his "results" are just guesses. Wrong guesses tainted the study ofperfect numbersfor centuries!

Euler  proved that allevenperfect numbers are of the form given by Euclid, namely: 2p-1(2p-1), provided(2p-1) is prime. Such a prime number  (i.e., one unit less than a power of 2) is known as a Mersenne prime.

Are there any odd  perfect numbers?

Nobody knows... Finding an odd perfect number, or showing that none exist,is one of theoldest unsolved  mathematical problems.

I think an odd perfect number can be found.
RenéDescartes  (1638)
 
The existence of an odd perfect number
would be little short of a miracle
.
James Joseph Sylvester  (1888)

Anodd perfectnumber wouldnecessarily be congruent to 1, 9, 13 or 25 modulo 36 (Touchard, 1953)  and would have the following properties:

  • No fewer than 300 decimal digits. [BCR 1991]
  • A prime factorization withonly one odd exponent.
  • At leastthree prime factors greater than 100.  [Iannucci 2000]
  • At leasttwo prime factors greater than 10000.  [Iannucci 1999]
  • At leastone prime factor greater than 108.  Jenkins had established a lower bounded of 107 in2003. The same method was used by Goto and Ohno in 2006 to improve the lower bound to108.
  • At least one prime-power  greater than 1020.  [Cohen 1987]
  • At least 9different prime factors. The number of different prime factors was first proved to be at least  4  byBenjamin Peirce in 1832 (The Mathematical Diary,2, XIII, pp. 267-277)  and, independently,by V.A. Lebesgue (1844). It was shown to be at least  8  by Chein (1979) and/or Hagis (1980). Nielsen improved this to  9  in 2006.
  • Multiplicities  whose sum has beenshown to be at least  29 by Sayers (1986), at least 37 byIannucciand Sorli (2003) and at least 47 byKevinG. Hare (2004). Hare improved successively his own record to 69, 71, 73 and 75 in2005 to introduce a new method but "not necessarily to extend this bound to the farthest extend possible".

An odd perfect number with k prime factors can't exceed24k[Nielsen 2003].


 Marin Mersenne (2000-10-25) 
The ongoing search for prime numbers of the form  2 1

In his honor,  the number  2n-1  is called the  nth Mersenne number  (thezeroth Mersenne number is thus zero). When a Mersenne number is prime,  it's called a Mersenne prime.  Mersenne primes are tied to perfect numbers.

Fr. Mersenne's first two mistakes were to omit exponent  61  from his mysterious listand to include exponent  67, which was shown to yield a composite Mersenne number byEdouardLucas, around 1875  (well beforeFrank Nelson Cole (1861-1926)heroicallyfactorized it, in 1903).

As of  October 2022, only 51 Mersenne primes are known, corresponding to the following values of theexponent  p.  (These are necessarily prime, because if  d  divides  p then  2d-1  divides  2p-1.)

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281,3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503,132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377,6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657,37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933...  (A000043)

The list is widely believed to be infinite,  but this has yet to be proved.

In recent years  (since 1989)  the largest known prime has always been a Mersenne prime (contrary to popular belief, this wasn't always so).

The 17  largest known  Mersenne primes were found by GIMPS :
RankPrime NumberDigitsDiscovered byDate
51 ?2 82589933-1   24862048Patrick Laroche2018-12-21
50 ?2 77232917-1   23249425Jonathan Pace2018-01-03
49 ?2 74207281-1  22338618Curtis Cooper2016-01-07
482 57885161-1  17425170Curtis Cooper2013-01-25
472 43112609-1  12978189Edson Smith,UCLA2008-08-23
462 42643801-1  12837064Odd MagnarStrindmo2009-04-12
452 37156667-1  11185272Hans-MichaelElvenich2008-09-06
442 32582657-1  98083582006-09-04
432 30402457-1  91520512005-12-05
422 25964951-1  7816230Dr.MartinR. Nowak2005-02-18
412 24036583-1  7235733Josh Findley2004-05-15
402 20996011-1  6320430Michael Shafer2003-11-17
392 13466917-1  4053946Michael Cameron2001-11-14
382 6972593-1  2098960Nayan Hajratwala1999-06-01
372 3021377-1  909525Roland Clarkson1998-01-27
362 2976221-1  895932Gordon Spence1997-08-24
352 1398269-1  420921JoëlArmengaud1996-11-13

Therefore, only  51 perfect numbers are known at this [updated] writing, including huge ones. Here is the beginning of the list:

6, 28, 496, 8128, 33550336, 8589869056, 137438691328,2305843008139952128, 2658455991569831744654692615953842176

 Leonhard Euler  (1707-1783)Of these, the last two (n = 31 and 61 in the above formula)were respectively discovered by Leonhard Euler (1772) andIvan Mikheevich Pervushin (37 digits, in 1883).

The following ones, corresponding to n=89 and n=107,were discovered by R.E. Powers in 1911 and 1914. They have respectively 54 and 65 digits. Before that, the value n=127 had been shownto give a Mersenne prime of 39 digits (and a perfect number of 77 digits)by Edouard Lucas (1842-1891) in 1875. Lucas could only achieve this by designing an efficient test,which would be the basis of all subsequent efforts,computerized or not (theLucas-Lehmer test). Lucas' heroic record would not be broken until the advent of the modern computer.The next two numbers in the list, the 13th and 14th Mersenne primes,are much larger (corresponding to n=521 and n=607)and were both discovered the same day(January 30, 1952, around 22:00 PST and shortly before midnight)by Raphael Mitchel Robinson (1911-1995), at the dawn of the computer age. 


(2009-04-27)  

Theabundancy  (n)  = -1(n)  = (n) / n  of a perfect number  is  2.
More generally, a number whose abundancy is an integer is variously called a multiperfect number  (MPN) or a pluperfect number. The competing locution  "multiply perfect" (used as early as 1907 by R.D. Carmichael)  is not recommended ("multiply" would rhyme with "triply", not "apply"). Multiperfect numbers whose abundancy is greater than  2 are called proper multiperfect numbers.

The effort to chart them has been spearheaded by Achim Flammenkamp.

In spite of mounting computational evidence that some of the lists tabulated beloware complete,Walter Nissenpoints out that this need not be so, even for our tiny listof six  3-perfect numbers.  Indeed,if    was a  [ huge ] odd perfect number, then the abundancy of  2  would be (2)  () = 3.

(n)/n  Multiperfect Numbers  (MPN)  A007691 Count 
111
26, 28, 496, 8128, 33550336, 8589869056, 137438691328 ... ?
3120, 672, 523776, 459818240, 1476304896, 510011801606
430240,32760,2178540,23569920,45532800,142990848,1379454720,43861478400,66433720320,153003540480,403031236608,704575228896,181742883469056,...36
514182439040, 31998395520, 518666803200, 13661860101120, 30823866178560, 740344994887680,796928461056000, 212517062615531520, 69357059049509038080, 87934476737668055040,170206605192656148480, 1161492388333469337600, 1245087725796543283200,...65
6245
7516 ?

In 1925, Paul Poulet (1887-1946) reported the first two 8-perfect numbers; they're both multiples of  262  with42 and 43 distinct prime factors, respectively.

As of 2010, the only known number  n = 2.5185... 101906  for which (n)/n = 11  is amonster of  246  prime factors, found byGeorge F. Woltmanon 2001-03-13:

Here are other numbers which divide twice the sum of their divisors:

(n)/n  Hemiperfect Numbers  (HPN)  A159907 Count 
3/221
5/224, 91963648, 102002360323
7/24320,4680,26208,20427264,197064960,21857648640,57575890944,88898072401645056,301183421949935616,9083288595228991885541376,22290964134962716779872256,230361837156847526055247872,3551746147589248994873004392448,8716209461184471402733217906688,90076051101488582786918337478656,275517471462331149989751161880576,8319263987369391948455878608398843904,20415999472827819113761327282781159424,3081634264657305632386843579602306072576,93050102500349677040144591462063024482811904,228350830852095014942603539620449439316967424.21
9/28910720,17428320,8583644160,57629644800,206166804480,1416963251404800,15338300494970880,6275163455171297280,200286975596707184640,215594611071909888000,5997579964837140234240,39887491844324122951680,189478877946949032837120,464993138593758319902720,4577250484712348791603200,314220801442981320248524800,14048146725436554258960875520,20270811496597107858493931520,81703797123392614369698250752, 612078178502919543930287114158080,939834592031480161274941547741184,1502078523847443989273473166868480,2306413471743588373372911017263104,157127060125322787706213898932715520,954799029953763034837845432097308672,2343137147924117580221226004651180032,11528505172715763556107234109992568639979520000.27
11/2117
or
more
13/2303
or
more

Thanks to Michel Marcus  for contributing to the extensions of the above tables [ 11/2 |13/2 ]. Note that, if the prime  2q-1 isn't a factor of  n, then:

(2q-1) -1( n (2q-1) )   =  2q-1(n)

Thus, if the abundancy of  n (2q-1)  happens to be  q, then the abundancy of  n  is equal to q-1/2. This way, a few hemiperfect numbers are obtained from some multiperfect numbers. For example, with  2q-1 = 5 the above applies to the three  3-perfect numbers  which are multiples of  5 (since none of them is a multiple of  25)  namely120, 459818240 and 51001180160  and yields the three known numbers of abundancy 5/2,  namely:  24, 91963648 and 10200236032.

Hemiperfect numbers of abundancy 5/2, 7/2, 11/2, 13/2, 17/2...are likewise obtained from some  multiperfect numbers of abundancy 3, 4, 6, 7, 9...

This doesn't work for  15/2  because  15  is not prime, but Michel Marcus  has observed  (2009-09-15) that a different transformation  can be used to obtain numbers of abundancy  15/2  fromany known number  7n  of abundancy  7  when  n iscoprime with  7  and  19.  Indeed, for such acofactor  n,  we have:

-1(n)   =  -1(7 n)/-1(7)  =   7/ (8/7)   =   72/ 8
Therefore,  -1(7219 n)   =  -1(7219) 72/ 8   =   15/2

One satisfactory cofactor is:    n   =  2121. 324. 57. 116.135. 173. 23 . 292. 312.43 . 47 . 61 . 67 . 79 . 83 . 103 . 109 . 1572. 233 . 281 . 313 . 331 . 373 . 827 .1549 . 2833 . 8269 . 8387 . 8951 . 9293 . 37171 . 45319 . 391151 . 1824726041 .768614336404564651 . 2305843009213693951

The above replacement of the partial factorization  7190   by  7191   is one exampleof what's known, in this context, as a substitution. Michel Marcus has used such substitutions extensively tounearth large numbers with simple abundancies... Conversely, some nontrivial substitutions were discovered as a byproduct of that search. The following example  (which transforms a number of abundancy 8 into a number of abundancy 15/2 )  was obtained byMarcus on 2009-09-28:

-1() /-1()   =   16/ 15

A cofactor of that substitution (coprime with 11, 17, 37, 43, 67, 79, 179, 631 and 3221)  whichyields numbers of abundancies 8 and 15/2 (225 digits) is:

268 . 325 . 57 . 712 . 135 .194 . 232 . 29 . 47 . 612 . 71 . 97 . 103 . 131 . 137 .1512 . 1572 . 197 . 2112 . 313 . 421 . 439 . 547 . 709 .769 . 811 . 827 . 853 . 877 . 911 . 1093 . 1621 . 8269 . 19993 . 36833 . 110563 . 178481 .3985812 . 797161 . 32668561 . 16148168401 . 10052678938039

Abundancies  15/2,  17/2,  19/2  and beyond...

Michel Marcus  first found (the hard way)  a 97-digit integer of abundancy  15/2  on July 4, 2009.  He then found many more, including the following  89-digit number of abundancy  15/2, discovered on August 15, 2009 :


= 235. 320. 55. 76. 112.132. 17 . 192. 23 . 29 . 312. 372.41 . 61 . 67 . 73 . 83 . 109 . 127 . 137 . 263 . 331 . 409 . 547 . 1093 . 4733 .36809 . 368089

As of 2010,the smallest known 9-perfect number is a 287-digit number  x  which is divisibleby 17 only once  (it was discovered by Fred W. Helenius  in 1995). So, the number  n = x/17 (which has 286 digits)  is an example of a number ofabundancy 17/2 (the smallest known one has 191 digits).

n   =  3.30181224610218582352934080494271949153807... 10 285
     =  2104. 343. 59. 712.116. 134.194. 232. 29 . 314.373. 412. 432.472. 53 . 59 . 61 . 67 . 713. 73 . 792.83 . 89 . 97 . 1032.107 . 127 . 1312. 1372. 1512.191 . 211 . 241 . 331 . 337 . 431 . 521 . 547 . 631 . 661 . 683 . 709 . 911 .1093 . 1301 . 1723 . 2521 . 3067 . 3571 . 3851 . 5501 .6829 . 6911 . 8647 . 17293 . 17351 . 29191 . 30941 . 45319 . 106681 .110563 . 122921 . 152041 . 570461 . 16148168401

By contrast,  19 never  appears withmultiplicity one  in any known 10-perfect number. We don't know any number of abundancy 19/2 (yet).


(G. S. of Farley, IA.2000-11-15)
How can a power , like 1217,  be calculatedwithout actually multiplying the whole thing out?  [ as in  ... ]

There are at least  2  ways. The second one applies beyond ordinary numbers.

First way: Use a table of logarithms.

You may use a table of logarithm. Such tables have been available at your local librarysince the early 1600's. Find the common logarithm of 12 (1.0791812) and multiply by 17. This gives you 18.3460804. You then use the table backwards to find that 0.3460804 is the log of 2.2186,so that your result is about2.2186.

Second way: Use repeated squaring.

To obtain an exact result without going through 16 multiplications,you may notice that an even exponent meanssquaring the result for an exponent that's only half as big (so that you "pay" the cost of just one multiplication to halve the exponentinstead of reducing it just by one as you do with the "naive" method). What if the exponent is odd? Well, you can reduce the problem to that of an even exponent at the cost ofjust one extra multiplication.  (Can't you?)

 The quantity z a^n  remains the same at  both points A & B

With exponent 17, squaring four times with just one"extra" multiplication will do the trick :

12 17   =  (((12 2)2)2)2 12

In other words:

  • 12 2 = 144,
  • 144 2 = 20736,
  • 20736 2 = 429981696,
  • 4299811696 2 = 184884258895036416
Multiply this by 12 to obtain the answer: 12 17 = 2218611106740436992

In this case,the number of multiplications has only been reduced from 16 to 5 (and they were more complicated to perform). However, when the exponent is very large,the improved method becomes much  better. Indispensable, in fact.

Number theorists often use the above approach to compute  anmodulo n, for very  large values of the exponent  n. Withmodular arithmetic, we don't have to deal with larger and larger resultsbecause, at each iteration,we only consider the remainder of the division by  m, which remains less than  m.


(Steve of Somerville, MA.2000-11-16) (A000041)
Howmany ways can the numbers 1 to 15 be added together to make 15? Is there a formula for that calculation?

The technical term for what you're asking is the "number ofpartitions of 15",which is often called p(15).  Apartition of n is a collection of positiveintegers (not necessarily distinct) whose sum equals n.

This has been studied at length by the best mathematical minds of all times, including theIndian geniusS. Ramanujan (1887-1920)  whocollaborated withJ.H. Hardy (1877-1947) to come up witha fantastic  exact formula for thepartitionfunction  p(n), as a sum [rounded to the nearest integer]whose number of terms is on the order of n. You may read about this on pages 97-99 of Littlewood's Miscellany  by John E. Littlewood (1885-1977).

In 1936, Rademacher  gave a formula for p(n) as a convergent series.

The number of partitions p(n) is the coefficient of xn in the expansion of

(1+x+x2+x3+...)(1+x2+x4+x6+...)(1+x3+x6+...)(1+x4+x8+...)(...) ...

This coefficient is indeed obtained by counting the number of ways there isto choose an exponent multiple of 1 from thefirst factor, a multiple of 2 from the second factor, a multiple of 3 from the third, etc.so these exponents add up to n. This leads to the formula for the "generating function"of p(n) which was first given by Euler (1707-1783) as the reciprocal of the products ofall factors (1-xn) where n ranges over the positive integers. (SeeEncyclopediaBritannica.)

Among many other similar essays, we recommend a recentlecture by Ken Ono.

There are 176 partitions of 15, namely:15, 14+1, 13+2, 13+1+1, 12+3, 12+2+1, 12+1+1+1, 11+4, 11+3+1, 11+2+2,11+2+1+1, 11+1+1+1+1, 10+5, 10+4+1, ...... 2+1+1+1+1+1+1+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1.

Values of the Partition Function  [more... ]
n012345678910111213141516171819
 p(n) 11235711152230425677101135176231297385490

Here's a simple program that will compute the number p(n) of partitions of nas an array of dimension m (m>2). The array "a" is just temporary storage.The program is based on Euler's basic remark and merely computes the first mcoefficients in the product of all the series(1+xu+x2u+x3u+ ...).(arrays "a" and "p" hold the coefficients of the resulting polynomials):

INPUT mDIM a(m),p(m)FOR i = 0 TO m: p(i) = 1: NEXT iFOR u = 2 TO m  FOR i = 0 TO m: a(i) = p(i): p(i) = 0: NEXT i  FOR j = 0 TO m STEP u    FOR k = j TO m      p(k) = p(k) + a(k-j)    NEXT k  NEXT jNEXT uREM At this point, p(n) is the number of partitions of nREM (for any n between 0 and m).

The following program achieves the same result much  faster !

input mdim p(m)p(0) = 1for i = 1 to m  j=1 : k=1 : s=0  while j>0    j = i-(3*k*k+k)\2    if j>=0 then s = s - (-1)^k*P(j)    j = i-(3*k*k-k)\2    if j>=0 then s = s - (-1)^k*P(j)    k = k+1  wend  p(i) = snext i

The above relies on the connection of partitions to both typesof pentagonal numbers (A000326andA005449) which also translates into a simple way to compute theDirichlet inverse(A129667)of thepartition-based multiplicative sequence which  Leonhard Euler  (1707-1783)enumerates distinct Abelian groups (A000688). All of this ultimately rests on the following (nice) statement proven by Euler...

Euler'sPentagonal Number Theorem :
n = 1
  ( 1 x n)     =    
k =
  (-1)k  x (3k2+k) / 2


(2011-01-21)  Ken Ono's great   on the partition function.
  

10 years after I enthusiastically recommended a lecture of his in theabove introduction,Ken Ono made headlines on this topic by giving a formula  for the partition function!

Ono appears modestly as the last author of two papers just publishedby the American Institute of Mathematics. The references below give links to the whole papers,a video by Ono and links to the press releases and blogsthat are helping break the news  (in chronological order).


by  Amanda Folsom, Zachary A. Kent, and Ken Ono   (21 January 2011)
That result was immediately given ashorter proof  by Frank Calegari  (bef. 2011-01-27).
 

by  Jan Hendrik Brunier and Ken Ono   (21 January 2011)
 

Lecture delivered on 2011-01-21 by Ken Ono  (2011-01-27)
 
New maththeories reveal the nature of numbers PR by  Beverly Clark, Emory University  (2011-01-20)
New maththeories reveal the nature of numbers First reactions at Physorg.com forum  (2011-01-20)
Finite formula foundfor partition numbers   by  S.C. Kavassalis   (2011-01-20)
Sequence of partition numbers found to be fractal   by  Ktwop   (2011-01-21)
Euler's Partition Function Theory Finished   by  Soulskill   (2011-01-21)
Ken Ono cracks partitionnumber mystery   by  Yuiop  on PhysicsForum   (2011-01-21)
Unanueva teoría matemáticarevela la naturaleza de los números ABC/Ciencia, Madrid  (2011-01-21).
Algebraic Formula for Partition Numbers (News) &Archives...  by Robin Whitty   (2011-01-22)
Ken Ono Leads Team in Recent MathematicalDiscovery  by Elizabeth Bruml  for emorywheel.com   (2011-01-24)
Unanueva teoría matemáticarevela la naturaleza de los números by En Línea Directa  (2011-01-26)
Deepmeaning in Ramanujan's Simple Pattern.   by Jacon Aaron  (2011-01-27)
Euler's Legacy: Mathematiker feiernEntdeckung in der Zahlentheorie.   (2011-01-27)
 
Videos :  New Theories Reveal the Nature of Numbers by  Ken Ono   (2011-01-27)
 
Partition numbers & Euler's pentagonal formula (53:33) by Burkard Polster  (Mathologer, 2020-10-17).


 Gerard Michon DrGerard (Gérard Michon from Los Angeles, CA.2000-11-18)
Let M be the sequence  M0= 0, M1= 1, and Mn+2 = Mn+1 2 Mn
0, 1, 1, , -3, ,5, 7, -3, -17, -11, 23, 45, , -91, -89, 93, 271, ...
TheBinet formulaforMn is :  Mn = (2/7) 2n/2sin (n atan 7 )
Considering this sequence modulo 8, it's clear thatMn cannot be equal to 1 if n > 2. Prove thatMn can't be equalto if n > 13.

As advertised, looking at the sequence modulo 8  (0, 1, 1,, 5, , 5, , ...)we see it can't go back to +1. To prove that M never returns to -1 either for n13  is more difficult. We need a few preliminary results about sequences obeying a second-orderlinear recurrence relation:

Lemma(s) :

If  U0 = 0,   U1 = 1,   and  Un+2 = A Un+1 + B Un   then, forany sequence V such that Vn+2 = A Vn+1 + B Vn  we have:

Vn   =   V0 Un+1 +(V1 A V0) Un

(This is easily established by induction on n.)
In the special case where  Vn = Un+k+1  we obtain :

Un+k+1   =   Un+1 Uk+1+ B Un Uk

Theorem :

With the notations introduced above, the following relation holds whenever A  B = 1(that is to say, when the integers A and B arecoprime):

Up Uq   =  | Upq |

The expression  x  y denotes thegreatest common divisor (GCD) of x and y (also known as theirhighest common factor, HCF).

Proof (outline):  The case  p = q  is trivial. We assume,WLG, that  pq and we leave it to the reader to prove, by induction on q, that Uq+1  Uq  =  1. We use the above lemma with  n+k+1 = p and  k = q :

Up Uq=( Up-q Uq+1 + B Up-q-1 Uq) Uq   =  ( Up-q Uq+1) Uq
=Up-q Uq     (since  we know that  Uq+1 Uq  =  1)

This parallels the founding relation  pq = (p-q)q  of thesubtractive version of Euclid's algorithm. The conclusion is thus obtained by induction, from  U0 = 0. Halmos

This theorem shows that a term in the M sequence can only be a primeor a unit (1)if its index is either prime or divisible only by indices corresponding to earlier units(1) in the sequence. Below 13 and besides  n = 1, the only such indices are 2, 3, 5, and 13. We see by inspection that the pairwise products and the squares of these special indicesdo not correspond to a value of -1 for M. From this, we deduce that thelowest index n above 13 corresponding to a value of -1  cannot be composite.  It must be prime.

Now, consider the sequence modulo 1171. Its period is 1170, which is divisible by 3, 5 and 13. The preperiod is of length zero(which is to say that the two residues 0 and 1 occur again consecutively 1170 terms later). Also, theonly terms in the first period that are congruent to -1 correspond tothe indices 3, 5 and 13. This means that any index n for which M is equal to -1 must be of one of the followingthree forms (for some integer k): 1170 k + 3, 1170 k + 5,  or 1170 k + 13. Each of these is divisible by 3, 5, or 13. This implies that n cannot be prime, unless it's equal to 3, 5, or 13... Therefore, the value -1 occurs only 3 times in the sequence M. Halmos

This proof is only convincing if you actually check 1170+2 termsof the sequence modulo 1171. There are many moduli like 1171  (including 1991, 3513, 5855, 5973, 6377, 8197, 8971 ...) for which the period of M is a multiple ofand all the indices of terms congruent to -1 are divisible by 3, 5, or 13...

I first posted this problem on 2000-11-18 at the defunct "Answer Point"of ask.com, where it received no attention whatsoever. The incentive which made me come up (finally!) with the above solution,onJuly 8, 2002,was provided by the interest the problem generated among the first math topics(2002-06-08)of the newAnswerPool.com board:
  • Maiku, have you got the answer to DrGerard's "-1" question yet? Working on it with a glass of Jack Daniels hasn't helped me one bit.
    [Coldfuse, 2002-06-10 onmsnAnswerPoint] 
  • I fear that the methods required are over my head. [FlyingHellfish].
  • I've given it some thought, but I'm stuck[Maiku]
  • I got lostreally quickly. [WiteoutKing]
  • This one is a doozy! [Coldfuse,2002-07-02] 
  • I have printed [this proof] for posterity [but] what's
    the significance of it all?  [Donaldekliros,2002-07-13]

In any integer sequence which(like M) starts with 0 and 1 and obeys a second-order linear recurrencewithcoprime coefficients, a prime number can only occur at an indexwhich is either prime or only divisible by another index where the sequence is1. For example,Mersenne primesmay only occur at prime locations  [sic] in the Mersenne sequence A000225.

Similarly,Fibonacci primes occur only at prime indices within the  Fibonacci sequence A000045,with justone exception  (the number 3 occurs at index 4).

The sequence M itself happens to have thelowest [exponential] growth among suchsequences  (we're ruling out 6 trivial cases with subexponential growth). Heuristically, M is thus expected to be more densely populated with primesthan any other sequence ot its kind. The above result can be used to prove that there are only 9 composite indices (4, 6, 8, 9, 10, 15, 25, 26, 65)  for which M is actually prime. This makes it much easier to work out the sequence of all the indices nfor which Mn is prime, namely:

4, 6, 7, 8, 9, 10, 11, 15, 17, 19, 23, 25, 26, 29, 31, 47, 53, 65, 67, 71, 73,113, 127, 199, 257, 349, 421, 433, 449, 691, 761, 823, 991, 1237, 1277, 1399,1531, 1571, 3461, 3697, 4933, 6199, 7351,9551, 9719, 11681, 12037, 14629, 14951, 19079, 20327, 22549, 30517, 51511, 52813, 60923,73943, 79687, 91249, 115321, 117017, 169493, 172411, 174413, 237053, 285631, 318751, 327433 ...(A101087)


(2009-06-29)  
A standard sequence has only finitely many primes of composite index.

Let's generalize theabove result to any Lucas sequence of the first kind withcoprime coefficients (which we may call a standard Lucas sequence, for short). By definition, such a sequence starts with 0,1and obeys the following recurrence relationfor two coprime  integers  A  and  B :

U0 = 0,     U1 = 1,
Un+2   =   A Un+1 + B Un

This makes the abovelemma andtheorem hold. We shall use the same approach as in theprevious articleto prove that the values -1 amd +1 appear only finitely manytimes  (the advertised result follows from that fact, as previously explained).

 Come back later, we're still working on this one...

(2008-05-06)  
On the number of perfect squares between two consecutive cubes.

Let's count the squaresbetween  n3  (included) and  (n+1)3  (excluded):

n3Perfect SquaresCount
001
11, 42
89, 16, 253
2736, 492
6464, 81, 100, 1214
125144, 169, 1963
216225, 256, 289. 3244
343361, 400, 441, 4844
512529, 576, 625, 6764
729729, 784, 841, 900, 9615
 1000   1024, 1089, 1156, 1225, 1296  5

Thus, there are at least two perfect squares between two (positive)consecutive cubes.  For large values of  n,  there aremany more, of course.  Let's see how many: Within  k  consecutive numbers located aroundsome large integer  m,  we would expect to find about k / 2m perfect squares.  There are k = 3n+3n+1 numbers between  m = n and the next cube, so we may expect to find roughly1.5 n  perfect squares amongthese.  This is, in fact, an excellent estimate sincethe actual count is always one of the two integerswhich bracket that quantity...

So, by subtractingthe floor of  1.5 n, from our counts of the perfect squares (1, 2, 3, 2, 4, 3, 4...) we obtain a particular sequence of zeroes and ones:

1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0,1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1,1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0,0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1,0, 0, 0, 0... (A140074)

closed formula  for this bit sequence is easy to obtain:

bn   =   floor
floor
( n3 + 3n2 + 3n ) 1/2floor
floor
   ceiling
ceiling
n 3/2ceiling
ceiling
  +   1    floor
floor
  n 1/2floor
floor
vinculum

This sequence of pseudo-random  bits has particularlyintriguing statistics.  The properties listed below have been conjecturedby observing one million terms.  In particular,  for a given integer  j, we may study the value of  bn+j  knowing the value of  bn+j and conjecture that they match with a definite probability  p(j)  as  n tends to infinity.

Conjectured correlations for a given spead  j
  bn    Prob ( bn+j = 0 )    Prob ( bn+j = 1 )  
0p(j)1-p(j)
11-p(j)p(j)

Conjectures about the values of  p(j) :

  • p(0) = 1/2   (values 0 and 1 are equally likely). 
  • p(1) = 1/2   (two adjacent bits are equally likely to match or not). 
  • p(2) = 2/3   (bits one place apart match twice more often than not). 
  • p(j)  varies slowly with  j in what appears to be a long-period damped oscillation with a limit of 1/2 (the first minimum having a value of about  0.45  around  j = 400).

Other short-range correlations exist which are not accounted for by the above. For example, the patterns 0011 and 1100 are very rare.

In spite of the many open questions thus raised,this sequence serves as an example of a "natural" pseudo-random sequencewhich unexpectedly fails to obey long-range randomness for mysterious  reasons.

Let's draw a bold analogy with a fundamental open question:  TheRiemann Hypothesis (RH) can be construed asa belief that the sequence ofprime numberslacks a certain type of long-range order. I offer the above example as a stern warning that the opposingbelief is tenable, in spite of currentheuristic "evidence". The fashionable temptation to assume  that RH is trueought to be resisted...


(2007-12-02)  
The n-th term in a sequence obeying a second-order recurrence.

For two given constants  A  and  B, consider the sequences  V  which obey

Vn+2   =   A Vn+1 + B Vn

Those form a two-dimensionalvector space, whereeach element is entirely determined by its "coordinates" (V, V).

For example, the (first part of) the abovelemma can be construedas expressing any such sequence  V  as a linear combinationof the two linearly independent sequences of coordinates (0,1)  and  (1,A).  If the first of those is dubbed  U, the second one is simply the sequence whose  n-th  term is Un+1

Now, consider the following sequence  W :

Wn   =   z n      where  z 2 = A z + B

The quadratic equation satisfied by  z  ensures that the sequence W  belongs to the above vector space. Usually, there are two distinct (complex) roots tothat equation, yielding two linearly independent sequences of the aboveform, which can serve as a vector basis. So, the n-th term of any sequence V  is of the form:

Vn   =  xn + yn      where  (z)(z) = z 2 A z B

In particular, for the sequence  U (which starts with  U0 = 0  and  U1 = 1) :

Un   =    n n
vinculum

In the special case when   the above breaks down.  Instead, we have:

Un   =  n n-1

Such explicit expressions are called Binet formulas, in honor of the influential French mathematician Jacques Binet(1786-1856;X1804) who succeededPoissonas Professor of mechanics at Polytechnique  in 1815. (Binet had been a classmate ofFresnel and thecoach ofBabinet.) The term applies especially to the case of Fibonacci numbers  (A = B= 1) :

Fn   =  [n(-)-n ] /5      where   = (1+5) / 2  =  1.61803...

Jacques Binet
 

The general formulas predate Binet  by more than a century. They were known to Abraham de Moivre (1667-1754) and Leonhard Euler ((1707-1783). D'Alembert (1717-1783) had even presented the degenerate case ( = ) as a limit of the nondegenerate one  (in a nonrigorous way, by modern standards).

Recall  that any  sequence  V  obeying a second-order linear recurrence ["degenerate" or not]  canbe expressed in terms of the above standard  sequence U  (obeying the same recurrence and starting with 0 and 1) :

Vn   =   V0 Un+1 +(V1 A V0) Un

Usage Note :  

0 =1.

  =   [ B + (1+B2) ]


 Jean-Dominique  Cassini (1625-1712) (2007-11-29)  

If  U0 = 0,   U1 = 1,   and  Un+2 = A Un+1 + B Un   then:

Vn   =  Un2  Un+1 Un-1  =   (-B)n-1     for any positive integer  n

This relation is usually stated in the context of Fibonacci numbers  (A=B=1) where it's known as Cassini's identity. It was discovered in 1680 by Jean-Dominique Cassini (1625-1712) and it has been rediscovered many times since, most notably byRobertSimson (1687-1768;pedal line)  in 1753.

:  Using  V1 = 1,  the general case is establishedby induction on  n :

Vn+1   =  (A Un + B Un-1) Un+1  (A Un+1 + B Un) Un  =   (-B) Vn      QED


 Maurice d'Ocagne  (1862-1938) X1880 (2007-11-29) 
A generalization ofCassini's Identitydue to Maurice d'Ocagne.

Un Um+1   Un+1 Um     =    (-B) Un-m      [ where  n ≥ m ]

:  For a given value of  m, let's consider the following function of  i :

Wi   =  Um+i Um+1   Um+i+1 Um

As  W0 = 0,  theabove lemma shows that Wi = WUi  where the value W1 = (-B)m  is obtainedimmediately fromCassini's Identity.   QED


(2007-11-30)    (Eugène Catalan, 1879)
Another generalization ofCassini's Identity.

Un2   Un+m Un-m     =    (-B)n-m  Um2      [ where  n ≥ m ]

LikeCassini's Identity andd'Ocagne's identity,Catalan's Identity  is almost always stated only  in the contextof Fibonacci numbers  (A=B=1).

:  We'll applyBinet's formula to etablish the result when thetwo roots   and   = (-B/) of the characteristic equation are distinct  (by continuity, this will alsoestablish the result for the special case when they are equal). To streamline notations, we prefer to deal with the sequence Vn = () Un

Vn   =  n (-B/)n

Well, let's just evaluate  Vn2   Vn+m Vn-m     :

2n   2 (-B)n +  (-B/)2n  {n+m (-B/)n+m } {n-m (-B/)n-m }
=      2 (-B)n + (-B)n-m2m + (-B)n+m /2m
=    (-B)n-m  [2m   2 (-B)m + (-B/)2m ]
=    (-B)n-m  Vm2   QED


Kirk Guidry (2002-03-30; e-mail)
[...]For a given p, how do you derive a formula for the sum of the p-th powersof the first n integers? I have seen formulas for up to p = 10,but I still have difficulties deriving the formula for p = 5...

The general formula you are after is sometimes calledFaulhaber's Formula and I'llgive it to you below... However, your question is not really about formulas butrather about the methods which may be used to obtain them.I'll give youtwo such methods.The first one is elementary and can easily be used to solve your original concernabout the formula for the sum of fifth powers.The second method is not so elementary(it involves the concept ofgenerating functions)but is much more powerful and can be used to establish the generalformula, which involves Bernoulli Numbers.

 Come back later, we're still working on this one...
On 2002-12-24,Ben Orinwrote:     [edited text]
[...] I recall reading a derivation of this formula in my calculus book(as the trepidation induced by my first encounter with the Bernoulli sequenceserves to vivify).
I remember the dissatisfaction that ensued,and theprompt contrivance of the formula that would soon pacify me:
 
To sum the pth powers of the first n integers,note that this sum is a polynomial in n of degree p+1,which is thus fully specified by p+2 of its points. Therefore, for each p, we may express the sum as aLagrange interpolating polynomial.  For example:
np+2k 
  m p   =     m p(n-j) / (k-j)
m=1k=1m=1j {1, 2 ... p+2}-{k}
 
Ben Orin
Ventura CollegeDept. of Mathematics

In the above expression, the chosen range for kand j (namely {1, 2, ... p+2})is anarbitrary example. As Ben points out, any set of p+2 points would do. This approach would establish the formula for p=5, say,by summing up 7 polynomials of degree 6(each expressed as a product of 6 linear functions of n). It fails to highlight the relation to the Bernoulli sequence.

Factored expressions for small values of the exponent p.
p
n
  m p  
m=0
0n+1 
1n (n+1) / 2 
2n (n+1) (2n+1) / 6 
3n2 (n+1)2 / 4        (Nicomachus's theorem)
4n (n+1) (2n+1) (3n2+3n1) / 30
5n2 (n+1)2 (2n2+2n1) / 12
6n (n+1) (2n+1) (3n4+6n33n+1) / 42
7n2 (n+1)2(3n4+6n3n24n+2) / 24
8n (n+1) (2n+1)(5n6+15n5+5n415n3n2+9n3) / 90
9n2 (n+1)2(2n6+6n5+n48n3+n2+6n3) / 20
10n (n+1) (2n+1)(3n8+12n7+8n618n510n4+24n3+2n215n+5) / 66
11n2 (n+1)2(2n8+8n7+4n616n55n4+26n33n220n+10) / 24
12n (n+1) (2n+1)(105n10+525n9+525n81050n71190n6+2310n5
                                   +1420n43285n3287n2+2073n691) / 2730
13n2 (n+1)2(30n10+150n9+125n8400n7326n6+1052n5
                       +367n41786n3+202n2+1382n691) / 420
14n (n+1) (2n+1)(3n12+18n11+24n1045n981n8+144n7+182n6345n5
                              217n4+498n3+44n2315n+105) / 90
15n2 (n+1)2(3n12+18n11+21n1060n983n8+226n7+203n6632n5
                      226n4+1084n3122n2840n+420) / 48

Denominator sequence:1,2,6,4,30,12,42,24,90,20,66,24,2730,420,90,48...

Johann Faulhaber  worked out the above table up to  p = 17 and observed that the result was a polynomial function of  x = n(n+1)/2 for odd  values of  p (a fact that would only be proved rigorously by Carl Jacobi  in 1834).


(2002-11-16)  
An important class ofarithmetic functions 

Anarithmetic function  or arithmetical function (in German:zahlentheoretische Funktion) is a numeric function  (with real orcomplex values) of the positive  integers. In the context ofnumber theory,an arithmetic function f  is said to bemultiplicative if

f (ab)  = f (af (b)    whenever the integersa andb arecoprime.

If we rule out the function that's identically zero [as is always done in this context] this implies that f(1) = 1 for any multiplicative function  f.

) defined below.

Also, the value of a multiplicative function at zero is always 0, whenever it's convenient to define that  [1,2,3,4 ]. However,  that convention is only mandatory in the case of totally multiplicative  functions,  for whichmultiplicativity must holds even if the factors are not coprime  (recall that zeroisn't coprime to any integer).

To define a multiplicative function,it is sufficient to specify its value when the argument is a positive  power of a prime( p).  Here are some examples (the first eight are easy to compute without factoring the argument):

  • Dirichlet unit:  (pn) = 0   [(k) =1/k= 0k-1  is zero unless  k=1]
  • Identity function: N(pn) = pn   [N(k) = k,  for any k]
  • Trivial character:  u(pn) = 1   [u(k) = 1,  for any positive integer k]
  • Character modulo 2:  v(2n) = 0, v(pn) = 1  if p>2 [v(k) = k mod 2]
  • Principal character modulo m:  (pn) = 0 if p divides m;  1 otherwise.
  • Grandi series:  G(2n) = -1, G(pn) = 1  if p>2  [G(k) = (-1)k+1 = 2v(k)-1]
  • Greatest common divisor: f (pn)  =  gcd(a,pn)  for a given number a.
  • Indicator of the perfect squares:  f (p2n) = 1   and  f (p2n+1) = 0
    Note that,  for any positive integer k,  we have:  f (k)  = o(k) mod 2.
     
  • Number of divisors(o  or  d):   d(pn) = n+1. [""  isn't recommended]
  • Sum of divisors(1  or ):  (pn)  = (pn+11) / (p1)
  • Abundancy:  -1(n)  = (n) / n [Aperfect number has abundancy 2.]
  • Otherdivisor functions:  k(pn)  = (pkn+k1) /(pk1)
    k(n)  is the sum of the k-th powers of thedivisors of n.
    k  can be negative  (orcomplex).  Note that: -k(n)  = k(n) / nk
     
  • Möbius function:  (p) = 1   and  (pn) = 0 for  n1.
  • Euler'stotient function:  (pn)  = pn1(p-1)
    (n)  is the number of integerscoprime to n, between 1 and n.
  • Pillai's GCD-sum function: g(pn)  =  (n+1) pn- n pn1 [K.A.Broughan]
    g(n) is the sum of the GCD's with n of the first n integers. [ g = N ]
  • Inverse of the above :  g [-1](pn) = (p-1)2 or 1-2p if n=1. (A101035)
  • Dedekind's psi function:  (pn)  = pn1(p+1)  (A001615)
     
  • Liouville's function:  (pn)  =  (-1)n  (A008836) 
  • Squarefree part:  sf (p2n)  =  1   and  sf (p2n+1)  =  p  (A007913)
    The smallest multiplier which makes a number a perfect square. 
  • Cubefree part:  cf (pn)  =  p(n mod 3)  (A050985) 
  • Squarefree kernel  (or "radical") :  rad(pn)  =  p  (A007947)
    The radical  of an integer is the product of its distinctprime factors. 
  • Multiplicative parity :  (pn)  = (rad(pn))  =  -1  (A076479). 
  • Enumeration ofAbelian groups :  Abel (pn)  =  p(n)  (A000688)
    In this,  p(n)  is simply thenumber of partitions of n. 
  • Inverse of the above :  f (pn) = 0  or (-1)if  n = (3k2 k)/2 (A129667)
  • Number of squarefree divisors :  f (pn) = 2  (A034444) 
  • Number of cubefree divisors :  f (p) = 2  f (pn) = 3  (A073184) 
  • Hardy's Chi function :  (pn) = 1, 0 or (-1) if p is 1, 2 or 3 modulo 4.
    Totally multiplicative and period 4:  1, 0, -1, 0, ... (A056594 orA101455) 
  • Ramanujan's Tau function :  (n)  (A000594) 

The ordinary product of two multiplicative functionsis itself a multiplicative function (so is their quotient, assuming a divisor with only nonzero values). A multiplicative function raised to the power of an integer is also amultiplicative function(so is the nonintegral power of a multiplicative function withpositive real values). Another very interesting type of multiplication, describedbelow,also yields a multiplicative result from two multiplicative operands...

A multiplicative function whose value at the nth power ofany primeis a function of  n only is said to depend only on the prime signature  of its argument. Some examples are: theDirichlet unit (),thetrivial character (u),thedivisor count (d),theMöbius function (),Liouville's function () andthemultiplicative parity (). Another example is the aforementioned function Abel,  which gives the number of distinct  (i.e., non-isomorphic)  Abelian groups of a givenorder.

Multiplicative function f  summed over all divisors of  n :

The sum of the values of a multiplicative function f for all divisor of an integer  n factorizes into as many factors as  n  has distinct prime divisors. The factor corresponding to a prime divisor  p  of multiplicity  k  is:

1  + f ( p )  + f ( p2) +  ...  + f ( pk)

very important special case  is thatof the Möbius function, for which all such factors vanish! Thus, the values of the Möbius function at alldivisors of any positive integer always add up to zero, unless that integer is just  1 (which has no prime divisors). That wonderful property is what makes the Möbius inversion formula work.  More about thatsoon...

For any integer  n  > 1
0   =      (d)
  


(2009-05-03)   )
A table of its values can be computed very fast by sieving.

The Moebius function   is definedabove, as a multiplicative function,in terms of the factorization of its argument  n. It is equal to zero if  n  is divisible by the square ofa prime.  Otherwise,  (n) is equal to either  -1 (if  n  has an odd numberof prime factors)  or  +1 (when  n  has an even number of prime factors).

A slight modification of the Sieveof Eratosthenes  can builda table of two-bit entries  (four possible values) from which  (n) can be obtained immediately. This can be done without performing a single multiplicationor division.  The idea is expressed by the following pieceof code, which uses   syntax but is really intendedto serve as a model for an assemblylanguage  implementation:

 10   ' This puts into M%(n) a two-bit code describing n: 20   ' 30   ' 0 = Prime number 40   ' 1 = Product of an odd number of distinct primes. 50   ' 2 = Product of an even number of distinct primes. 60   ' 3 = Multiple of the square of a prime. 70   ' 80   Top=3000 ' Running time is O( Top * Log(Log(Top)) ) 90   '100   dim M%(Top) ' Array is initialized with zeroes110   M%(1)=2 ' 1 is the product of 0 primes (0 is even)120   '130   P=2:I=P+P140   '150   while I<=Top ' Outer loop160   '170   J=2 ' I remains equal to J*P modulo P^2180   '190   while I<=Top ' Inner loop200   if J=P then J=0:M%(I)=3:goto 230210   X=M%(I):if X=3 then 230220   if X=1 then M%(I)=2 else M%(I)=1230   I=I+P:J=J+1240   wend ' End inner loop250   '260   inc P:while M%(P):P=P+1:wend ' Fetch next prime270   I=P+P280   wend ' End outer loop290   '300   for N=1 to Top ' Check against built-in function310   if fnMu(N)<>moeb(N) then stop320   if M%(N)=0 then print N,' DEMO: Show list of primes330   next N340   end350   '360   fnMu(X)370   X=M%(X)380   if X=3 then return(0)390   if X=2 then return(1)400   return(-1)

For the sake of simplicity, this didactic example does not attemptto produce a very compact array. Ideally, one bit of data per integer will suffice,since it's enough to store 2 bits for each odd  integer.  Indeed, no even integer (besides 2) is prime and  (2n) is either  trivially zero (if n is even) or  is found directly from the tablefor odd numbers, as equal to -(n).

The number of additions performed to make a table of size  M with the above procedure is proportional tothe following expression, wherek  is a constant and  p is the largest prime less than or equal to  M/2 :

k.M + M/2 + M/3 + M/5 + M/7 + M/11 + M/13 + ... + M/p

This is  O(M Log Log M) because the sum of the reciprocal of all primes less than  x isroughlythe integral of  1/(x Log x)  which is  Log Log x. (Incidentally, this argument can be considered the backbone of a proof thata large number N has an average of about  Log Log N distinct prime factors.)

Although it does grow without bounds, the quantityLog Log x  is equal to  3  for all practical purposes! (It's exactly that when  x  is around one billionand it changes only by 10% or so when  x  varies by a factor of one thousand.) The result of the above procedure is thus not worth storing on a computer disk;it can be recomputed faster than it could be loaded back into core memory...


(2002-11-16)  
The weirdmultiplication in the "Dirichletring"of arithmetic functions. Multiplicative functions form a group under Dirichlet convolution.

Prototypical Example:  The Sum-Function

If f  is an arithmetic function, a function  F, called thesum-function off,  is defined by letting  F(n) be the sum of the termsf(d) for all divisors d of n.

If f  ismultiplicative,so is its sum-function  F.

The function  f  may be retrieved from F by using the so-calledMöbius inversion formula, which states that f (n)  is the sum of all terms F(d) (n/d)  for all divisors d of n,where is theMoebius function.

:   d|n F(d) (n/d)  =   i.j|nf (i) (j)
In this, the factor of f (i)  is the sum of all (j)when j is a divisor of n/i. That's clearly equal to 1 when i=n.  For all other values of i,the sum over j vanishes, because of apreviously made remark QED

Generalization:  The Dirichlet Convolution

Generally, the Dirichlet product  (or convolution) F = f  g of two arithmetic functions is defined  by letting  F(n)  be the sum of theterms f (d)g(n/d)  for all divisors d of n :

    F(n)   =  fg (n)   =     f (d) g(n/d)    

F is multiplicative wheneverf andg are, because any divisor of n =ab (wherea andb arecoprime) is the productd = uv of two coprime factors u and v, respectively dividinga andb. The same is true for  n/d = (a/u)(b/v).  Therefore:

F(ab)   =        f(u)g(a/u) f(v)g(b/v)    =   F(a) F(b)
  

Among arithmetic functions, the Dirichlet product (also calledDirichlet convolution) is a commutativeand associative  operation (the value at point  n  of fgh being the sum of all terms f(u)g(v)h(w) where u.v.w = n, for positive integers u,v,w).

Convolution is also distributive over ordinary [pointwise] addition. Ordinary addition and Dirichlet multiplication thus endow arithmetic functions  withthe structure of aring, called the Dirichlet ring.

Dirichlet Inverse :

For Dirichlet multiplication,  the neutral element is theabove Dirichlet unit (). Any arithmetic function f  for which f (1)  is nonzerohas a Dirichlet inverse  if we're considering arithmetic functions whosevalues are in afield.

If  f (1) = 1   (which holds for all multiplicative functions)  an arithmetic function f  whose values are in a unital  ring (e.g., the ring of integers)  has a Dirichlet inverse with values in the same ring. Thus, the Dirichlet product endows multiplicative functions with the structure of agroup.

The Dirichlet inverse of the trivial character  u  [u(n) = 1] is the Möbius function . This is equivalent to the above Möbius inversion formula :

If     F  =  uf    then    f  =  F

Convolutive group over a unital ring of coefficients :

Over any unital ring, an arithmetic functions f  has a Dirichlet inverse iff  its leading coefficient  f (1)  is invertible. With respect to the Dirichlet product, the set of all such arithmetic functions form a group which I'll callthe convolutive group.  Two of its subgroups are of particular interest:

Unlike some of their subgroups, those convolutive groups are also stable under pointwise  multiplication,  for which the following distributive equationshold if the function h  happens to be totally multiplicative  andits values commute with the values of f  and  g.

(f *g )h   =  f h  * g h
h (f *g )   =  h f  * h g

In 1973Eric Langfordbriefly investigated how convolution could be defined to allow the above to hold only  for totally-multiplicative factors...


(2004-11-27)  
Well-defined for any function whose leading term is real and positive.

It's easy to show that,  for any positive integer  q  and any arithmeticfunction f  with real positive leading term f (1) there's a unique root  (with a positive leading term) of which the function f  is the Dirichlet q-th power. This defines the Dirichlet 1/q power of f and the p/q power of f  is the p-th power of that thing. Any such Dirichlet power of a multiplicative function is again a multiplicative function.


(2004-11-27)  
Negative powers are positive powers of its inverse  u = 1,1,1,1,1,1...

The Dirichlet power [k] of the Möbius function happens to have avery nice explicit definition (in terms of its values at the powers of any prime p):

[k](pn)  =   (-1)n C(k,n)

This formula holds even if  k  is negative (powers of  u =[-1] ,including  d = uu ). More surprisingly, it's also true for fractional  values of k:

Dirichlet square root of the Möbius function :   [ ½ ](p)  = (-1)nC(½,n)
m =123456789101112
[½] (m) 1 -1/2-1/2-1/8-1/21/4-1/2-1/16-1/81/4-1/21/16


(2002-11-16)   by  u  (or  )  and  N :
Where     u = 1,1,1,1,1,1,1...     and     N = 1,2,3,4,5,6,7...

Whole  powers of the Möbius function   and/or its inverse  u  follow the pattern generalized  in the previous section,  namely:

  • A063524:     =     =  u   =   d  =  [0]
  • A008683:  (pn)   =   resp.(-1, 0)   for   (n=1, n>1)
  • A007427:  (pn)   =   resp.(-2, 1, 0)   for   (n=1, n=2, n>2)
  • A007428:  (pn)   =  (-1)n C(3,n)
  • A000012:  u   =   d  =  [-1]
  • A000005:  d   =   uu  =  [-2]
  • A007425:  du   =  uuu   =  [-3]
  • A007426:  dd(pn)   =   C(n+3,3)  =   (-1)nC(-4,n)  [A000292]

The simplest multiplicative function excluded from thisis the identity function  N = 1,2,3,4,5... Convolving its own Dirichlet powers with the above, we obtain many noteworthy multiplicative functions,  including:

  • A000027:  N   =   u   =  
  • A000203:     =   uN  =   d*  =   u*u*
  • A000010:     =   N
  • A018804:  g   =   N
     
  • A055615:  N [-1](k)   =   k (k)
  • A046692:   [-1](pn)   =  (-p-1, p, 0)   for   (n=1, n=2, n>2)
  • A023900:   [-1](pn)   =   1-p    [Calledreciprocity balance.]
  • A101035:  g [-1](p)   =   1-2p    and     g [-1](pn)  =   (p-1)2, if n>1.
     
  • A038040:  NN(k)   =  (k)   =   k d(k)
  • A034718:  NNN   =  g
  • A007429:  u   =   dN
  • A007430:  d
  • A007431:     =   N
  • A007432:     =   N
  • A029935:  (pn)   =  (n+1) pn - 2n pn-1 + (n-1) pn-2


(2009-11-14)  
Their values on  { pn | n = 1,2,3... }  depend only on valuesof f  there.

A multiplicative function f  can be specified by giving,for every prime p, the generating function of the values of f  at the powers of  p.

Conversely, any family of formal generating functions (i.e.,  formal power series, convergent or not) indexed by the primes and such that p(0) = 1 uniquely determines a multiplicative function, provided only that 

p(z)   =   n f (pn)  zn

The following beautiful formula determines theDirichlet power of f  for any exponent  k (the Dirichlet inverse  of f is obtained for  k = -1 ).

p(z) k   =   n f[k](pn)  zn

A similar relation defines  the Dirichlet product of twomultiplicative functions:

n f (pn)  zn n g (pn)  zn    =     n  fg (pn)  zn

Essentially, a multiplicative function  is thus usefullydescribed as an object with infinitely many components (one for each prime p) each consisting of a sequence starting with  1  (one). The Dirichlet convolution  (or Dirichlet product) of two such things is the object whose componentsare ordinary Cauchy products of the corresponding pairs of component sequences. That's all there is to it.


(2002-11-16)  
The simplest type ofmultiplicative functions.

A function f  is calledcompletely multiplicative(ortotally multiplicative) when f(ab) =f(a)f(balways holds,  whethera andb arecoprime or not. In that case,  the Dirichlet inverse g verifies  g(n) = (n)f(n),  since:

gf (n)   =    (d)f(d)f(n/d)  =  f(n)  (d)  =  f(n) (n)  =   (n)
   

The last equality holds for n=1 because f(1)=1,and for n>1 because (n)=0.

Dirichlet-Inverse  g  of a totally-multiplicative function  f
g (n)   =   (n) f (n)

completely multiplicative  arithmetic function f  and itsDirichlet-inverse g  are fully determined by the values f (p)  chosen for f  at prime indices p :

f (pn)  = f (p) n   whereas   g(p) = -f (p)   &   g(pn) = 0,   if n>1

That's just a special case ofthe above formula, with  p(z) 1 = 1- f (p) z

A multiplicative function which is zero for squares of primes, and higher powersof prime numbers, is thus the Dirichlet inverse of atotallymultiplicative function.

This applies, in particular, to the Dirichlet characters (presentednext)  as those are indeed totally multiplicative.

Unless it's 1 everwhere,  a totally multiplicative  must vanish at zero.

The convention f (0) = 0  is mandatory  for any totally multiplicative  functions, with the possible exception of the function which is everywhere equal to  1. By convention, neither that function nor the zero function  (which vanishes everywhere) are considered totally multiplicative,  so that all such functions can be statedto verify f (n) = n  when  n  is  0  or  1.


(2002-11-16)  
An important example of totally multiplicative functions.

A Dirichlet character modulo k (also called character to the modulus k ) is acomplex-valued completely multiplicative  function of period k,which vanishes whenever its argument isn'tcoprime with k.

The conductor  of a given Dirichlet characteris its smallest  period. The characters to the modulus k with conductors equal to k are called primitive (those whose conductors areproper divisorsof  k  are called imprimitive ).

There are exactly  (k) possible Dirichlet characters to the modulus k (where is Euler'stotient function). They are tabulated below for some small values of  k.

Except for k=3, k=4 and k=6 (which could have been tabulatedtogether) we've spared the expense of separate tables for isomorphic structures. Instead, we indicate at the bottom of the relevant tables how to relabel thecolumns for additional values of k (a wildcard label '*' is to be used for unlisted valuesof n, which correspond to zero columns because they're notcoprime with k).

For example, such an isomorphism exists among all the values of k (7, 9, 14 and 18)for which (k)=6,as there's only oneAbelian group of order 6. On the other hand, the two distinct 4-line structurescorrespond to the two distinct Abelian groups of order 4, namely,  the cyclic group (k=5, k=10) and theKlein group (k=8, k=12).

k = 1
n0
u (n)1
 
k = 2
n10
1(n)10
 
k = 5     (k) = 4
n12340
1(n)11110
2(n)1i-i-10
3(n)1-ii-10
4(n)1-1-110
k = 101379*
 
k = 3
n120
1(n)110
2(n)1-10
 
k = 4     (k) = 2
n1230
1(n)1010
3(n)10-10
 
k = 6     (k) = 2
n123450
1(n)100010
5(n)1000-10
 
k = 7     (k) = 6
n1234560
1(n)1111110
2(n)12--210
3(n)1--22-10
4(n)1-22-10
5(n)12--2-10
6(n)11-11-1-10
k=9142758*
k=1419311513*
k=18113117517*
 

k = 8     (k) = 4
n12345670
1(n)10101010
3(n)10-1010-10
5(n)1010-10-10
7(n)10-10-1010
k=121*5*7*11*
     = exp ( i/3) = (1+i3) / 2
   [3 = -1 ]
 
 
 
k = 11     (k) = 10      x  = exp ( i/5)
n 1 2345678910 0 
1(n)11111111110
2(n)1x-x3x2x4-x4-x2x3-x-10
3(n)1-x3x4-xx2x2-xx4-x310
4(n)1x2-xx4-x3-x3x4-xx210
5(n)1x4x2-x3-x-x-x3x2x410
6(n)1-x4x2-x3-xxx3-x2x4-10
7(n)1-x2-xx4-x3x3-x4xx2-10
8(n)1x3x4-xx2-x2x-x4-x3-10
9(n)1-x-x3x2x4x4x2-x3-x10
10(n)1-1111-1-1-11-10
k=22179531917131521*
 
k = 13     (k) = 12      y  = exp ( i/6)
n 1 23456789101112 0 
1(n)1111111111110
2(n)1yy4y2-y3y5-y5y3-y2-y4-y-10
3(n)1y4y4-y21-y2-y21-y2y4y410
4(n)1y2-y2y4-1-y4y4-1y4-y2y210
5(n)1-y31-1-y3-y3y3y31-1y3-10
6(n)1y5-y2-y4-y3y-yy3y4y2-y5-10
7(n)1-y5-y2-y4y3-yy-y3y4y2y5-10
8(n)1y31-1y3y3-y3-y31-1-y3-10
9(n)1-y2-y2y41y4y41y4-y2-y210
10(n)1-y4y4-y2-1y2y2-1-y2y4-y410
11(n)1-yy4y2y3-y5y5-y3-y2-y4y-10
12(n)1-111-1-1-1-111-110
k=261792321111553171925*
and i (to allow y to beany primitive 12-th root of unity).
 
k = 15     (k) = 8
n12478111314
1 (n)11111111
2 (n)1i-1-i-i-1i1
4 (n)1-11-1-11-11
7 (n)1-i-1-ii1i-1
8 (n)1-i-1ii-1-i1
11 (n)1-111-1-11-1
13 (n)1i-1i-i1-i-1
14 (n)111-11-1-1-1
k=1613951171315
k=20179173111319
k=301171973111329
 

k = 24     (k) = 8
1571113171923
 1 1111111
 1 111-1-1-1-1
 1 1-1-1-1-111
 1 1-1-111-1-1
 1 -1-11-111-1
 1 -1-111-1-11
 1 -11-11-11-1
 1 -11-1-11-11
01234567
 Multiplicative residues modulo 24 are likeadditive 3-bit vectors.

Incidentally,  the entries in any row, beyond the first one, add up to zero. That's to say that any nontrivial  character   of period  k satisfies a linear recurrence relation of order  k-1.  Namely:

(n+k-1)   =  (n+k-2) ...(n+1)(n)

Collectively, the  (k) characters modulo k form a group with respect to pointwise multiplication (isomorphic  to themultiplicative groupof the residues coprime to k)  whose neutral element isthe so-called principal  Dirichlet character modulo k(whose value is 1 for an argument coprime to k and 0 otherwise). It is denoted by the symbol 1 in the above tables.

We have indexed the characters in those tables with the multiplicativeresidues modulo k  themselves, in accordance with the aforementioned isomorphism(for the smallest relevant k). This convention makes the above tables symmetrical:

m(n)  =  n(m)

Except in the trivial cases  (i.e., k = 1, 2, 3, 4 or 6)  there are several  indexing scheme with this property (because several automorphisms exist). Thus, the above does not assign unambiguous names to the various Dirichlet characters.

Some (real) Dirichlet characters are obtained by generalizingtheLegendre symbol (ofquadratic reciprocity fame).  Generalized versionsof the Legendre symbol often go by other names  (Jacobi symbol orKronecker symbol)  which we don't advocate, because suchnomenclature is not technically needed...

(n)   =   ( n | k )

That's sometimes called the alternating character  of period  k (especially when  k = 4).  The above tables always show this particular characterin the last row  ( green shading ). Recall that the Kroneker generalization ofthe Legendre symbol obeys the followingad hoc conditions:

(a | -1 )   =   sign(a)
 a mod 8 01234567
(a | 2 )010-10-101

If  k  is  1, 2, 4,the power of an odd prime, or twice  the power ofan odd prime (A033948) then the corresponding group iscyclic (i.e., it has aprimitive root). In that case, we may consider a given primitive root  r  of themultiplicative group formed by theinvertible elements modulo k, often denoted(Z/kZ)*, and state that every character   modulo k is obtained by the following definingrelation for some (k)-th  root of unity  z (not necessarily a primitive one).

n    (rn)  =   z n

Some of the above tables were so obtained;  sorting columns in ascendingorder of the arguments  (r n ). Here's another way to present things:

(k) = 16      z16  =  1
 ()1zz2z3z4z5z6z7z8z9z10z11z12z13z14z150
k=17139101351511161487412260
k=34139271351511333125721291923*
 
(k) = 18      z18  =  1
 ()1zz2z3z4z5z6z7z8z9z10z11z12z13z14z15z16z17
k=19139851572618161011144121713
k=27152517420191416262221023781311
k=381392751572125373529113323311713
k=54152517314719414353492937237351311

The same compact tabulation may be used for non-cyclic groups (A033949). We may illustrate that with the smallest modulus not yet encountered  (k=21):

(k) = 12      x2  =  1      y6  =  1
 ()1yy2y3y4y5xxyxy2xy3xy4xy50
k=211542016171321081911*
k=421525413717132331291911*

The Dirichlet characters modulo k are just the homomorphisms from the multiplicative group (Z/kZ)*  intothe group of the  (k)-th  roots of unity.


 Leonhard Euler  (1707-1783)(2007-04-17)  
Consider the series   F(s)  = n f (n) n-s  for some value of s.

If f  is amultiplicative function,this can be expressed as an Euler product , namely an infinite product whose factors are functions of all the consecutiveprimes: p = 2, 3, 5, 7, 11, ...  (: Every coefficient f (n)  appears in the expansion of this product, tied to theunique factorization of n  into primes.)

p ( 1  + f (p) p-s + f (p2) p-2s + f (p3) p-3s + f (p4) p-4s +  ... )

This formal  equality  (discarding issues of numericalconvergence)  holds if and only if  the function f  is multiplicative, in the sensespecified above.

When f  istotally multiplicative,eachEuler factor becomes a geometric series, which we may sum upto obtain the simple relation:

F(s)   =  n f (n) n-s  =  p ( 1   f (p) p-s) -1

When f (n) = 1  for any n (with theabove notations,f  isthetrivial character  u ) that relation expresses Riemann's zeta function F(s) = (s).

(s)   =  n  n-s  =  p ( 1    p-s) -1

If f is aDirichlet character ,the above is called a Dirichlet L-function :

L(,s)   =  n  (n) n-s  =  p ( 1    (p) p-s) -1

  n mod 4  1230
1(n)1010
3(n)10-10

Here's what's obtained in the case of the twoDirichlet characters modulo 4,  given at right. The first one reduces to the zeta function:

L(1,s)   =  (1-2-s) (s)

The other one  (the alternating character of period 4) defines Dirichlet'sBeta function,  which is also known as Catalan's Beta function:

(s)   =  L(3,s)
=   1 3-s+ 5-s 7-s+ 9-s 11-s+ 13-s 15-s+ 17-s 19-s + ...
=   1
Vinculum
(1+3-s)(15-s)(1+7-s)(1+11-s)(113-s)(117-s)(1+19-s)...

The above series converges only for  Re(s) > 0  but it hasan analytic continuation to the entire complex plane  (without singularities) brought about by the following reflection formula, using theGamma function:

(1-s)   =  (/2)-s  sin(s/2) (s) (s)

It's conjectured  that the analytic continuation of any series in  n-s with totally multiplicative  coefficients which satisfiessuch a reflection formula always verifies a counterpart of Riemann's hypothesis,  namely: All zeros in the critical strip  (0 < Re(s) < 1)  lay on the criticalline  (Re(s) = ½).


(2021-07-03)  
Nice sums of some series over prime powers,  where  pk  has weight  1/k.

There's something magical about some series indexed by the powers of the primes when  kth powers have their weight reduced by a factor  k.

Indeed,  consider the Euler factorization  of Dirichlet L-functions  when the magnitude of (p) p-s  never exceeds 1:

Log L(,s)  =  p Log ( 1    (p) p-s)  =  p k  (pk) (pk)-s / k

That can be described as the original series without the composite indices,  exceptprime powers,  for which the terms are divided by the exponent. This presentation looks "magical" and is a favorite of Grant Sanderson (who rarely bothersif ever to give the above proof, which works for any absolutely convergent series (sothe termscan be commuted freelywithout changing the sum) with totally multiplicative ceoefficients(Dirichlet characters are an example).  Examples:

(s)
3-s+ 5-s+ 7-s+ 9-s/2+ 11-s+ 13-s+ 17-s+ 19-s+ 23-s+ 25-s/2...   =   Log (s) + Log (1-2-s)
1 3-s+ 5-s 7-s+ 9-s/2 11-s+ 13-s+ 17-s 19-s 23-s...   =   Log (s)

 Come back later, we're still working on this one...


(2007-04-17)  
L-functions can be expressed in terms of these generalizations of Riemann's zeta function  (and vice-versa).

The Hurwitz zeta function  is defined as follows:

(s,q)   =  n (n+q)-s

The parameter  q  is usually assumed to be a real between 0 and 1,although the function is well-defined for other values of  q.

The L-function for any Dirichlet character to the modulus k  is just a linear combination of Hurwitz zeta functions(for rational values of q):

L(s,)   =   k-s  
k
n=1
  (n) (s,n/k)

Conversely, the Hurwitz zeta function for a proper fraction  q = n/k  (expressed in lowest terms)can be expressed as a finite sum over all theDirichlet characters    to the modulus k,namely:

(s,n/k)   =   (n) L(s,)


(2020-08-24)  
A class of arithmetic functions  similar to multiplicative functions.

Anarithmetic function  with numerical values is said to beaddittive if

f (ab)  = f (a)  + f (b)    whenever the integersa andb arecoprime.

This implies that f (1)  =  0.  [f (0)  can't be assigned any finite value. ]

If the above holds even when a  and b  are not coprime, then f  is said to be fully additivetotally additive or completely additive.

An additive function is fully defined by the values it takes at the powers of primes. Conversely, arbitrary values at those points uniquely define an additive function. An additive function f  is totally additive  if and only if:

nN ,   pN ,  f (pn)   =   nf (p)

Prescribed values for primes uniquely define a totally additive  function.

The sum of two (totally) additive functions is (totally) additive. Likewise,  a (totally) additive function is obtained by multiplying into ascalar a (totally) additive funstion.  The additive functions form a vector space  of which totally additive functions are a subspace.

The zero function  (vanishing everywhere)  is additive  (but not multiplicative). It's the zero vector in the linear space of additive functions.

Some additive arithmetic functions:

  • Number of distinct prime factors:   (pn)  =  1  (A001221).
  • Sum of distinct prime factors:  sopf (pn)  =  p  (A008472).
  • Logarithm of a positive multiplicative function.
  • Generic additive function:  g (pn)  is arbitrary for powers of primes.

Some totally additive arithmetic functions:

  • Zero function:  f (pn)  =  0  (A000004).
  • Number of prime factors repeated:   (pn)  =  n  (A001222).
  • Sum of prime factors repeated:  sopfr (pn)  =  n p  (PotencyA001414).
  • Euler's sub-gradus:  g0 (pn) = n (p-1)  (A275314 - 1).
  • Logarithm of a positive totally multiplicative function.
  • Generic totally additive function:  g (pn) = n g (p)    (arbitrary for primes).

border
border
visits since Dec. 6, 2000
 (c) Copyright 2000-2023, Gerard P. Michon, Ph.D.

[8]ページ先頭

©2009-2025 Movatter.jp