Movatterモバイル変換


[0]ホーム

URL:


Western Art Music

Leibniz arms
Music is the pleasure the human mind experiences from counting, without
being aware that it is counting.

G. G. Leibniz  (1646-1716)

 Michon
 
 border
 border
 border

Related articles:

Related Links (Outside this Site)

Art and Science of Music Acoustics by Joe Wolfe (UNSW,  Physics).
 
The Scale Omnibus:399 scales in 12 keys.  Francesco Balena  (2014-06-08).
AllTheScales.org  & Musica Arcana by William Zeitler (1954-).
A Study of Scales  by Ian Ring.  |  Scale Finder
FretboardTopologies (1117 Scales and Modes)  by Nicholas Puryear  (2010).
Allthe heptatonic scales  by Richard Repp.
 
Sibelius  vs. Finale by Ron Hess  (Film Music Magazine, 2008-09-17).
MuseScore 2, Notion 6, Finale v25, Sibelius 8 by Freixas  (2016-20-22).
 
The Ultimate Guide to the Circle of Fifths (Musical U,  2017-07-18).

short history  of tunes:

Hurrian Hymn to Nikkal (h.6). Hurrian songs (Ras Shamrah, c. 1400 BC).
 
Psalm 95 (c.1000 BCHebrew chantattributed toDavid.
 
Seikilos Epitaph (1st Century AD) by Seikilos  ofTralles.
Hymn to Nemesis (2nd Century AD) by Mesomedes of Crete.
 
Te Deum (Ambrosian hymn,c.387) under Ambrose of Milan (c.340-397).
 
Medieval Instrumental MusicDerek and Brandon Fiechter (2014-08-20).
 
Farai un vers pos mi sonelh by Guilhem de Peitieu (1071-1127).
 
Dies Irae, Dies Illa (bef.1250). Gregorian chant in D-Dorian: F-E-F-D...
 
Nuper rosarum flores (1436-03-25) by Guillaume Du Fayt  (1397-1474).
 
Scaramella by Josquin des Prez  (c.1450-1521).
 
Tant que vivray (1527) by Claudin de Sermisy  (1490-1562).
La guerre (1537) by Clément Janequin  (1485-1558).
 
Aux marches du palais (cf. La Flamande.  Jehan Chardavoine, 1576).
OriginalDans la cour du palais, il y a une Flamande.
Elle a tant d'amoureux qu'elle ne sait lequel prendre...

 
Greensleeves  by Richard Jones (1580-09-03). History.
Flow my tears(1596)  by John Dowland (1563+1629).
L'Orfeo(1607Claudio Monteverdi (1567-1643) &Striggio the Younger.
Daphne(1644)  by Jacob van Eyck (1590-1657).
Au clair de la lune by Jean-Baptiste Lully (1632-1687).
Canon in D major(c.1685Johann Pachelbel (1653-1706). Revived in1980.
Rondo from Abdelazer(1695)  by Henry Purcell (1659-1695).
Toccata and Fugue in D minor (c.1704Johann Sebastian Bach (1685-1750).
The Violin Concertos (1:19:50)  by Johann Sebastian Bach (1685-1750).
The Four Seasons (1717) by Antonio Vivaldi (1678-1741).
Hallelujah Chorus (Messiah1741George Frideric Handel (1685-1759).
Le bon roi Dagobert(c.1755). Poking fun at Royalty,  for the first time?
Yankee Doodle Dandy(c.1755)  by Richard Shuckburgh.
Frère Jacques (c.1760) by Jean-Philippe Rameau (1683-1764).
Minuet (1771) by Luigi Boccherini (1743-1805).
Amazing Grace (1779) by John Newton (1725-1807).
Turkish March (c.1783) by Wolfgang Amadeus Mozart (1756-1791). Spoofed.
Eine kleine Nachtmusik (c.1787) by Wolfgang Amadeus Mozart (1756-1791). 
Auld Lang Syne  (1788)  by Rabbie Burns  (1759-1796).
The Magic Flute (1791) by Wolfgang Amadeus Mozart (1756-1791). 
 
Twinkle, Twinkle, Little_Star: Lyrics by Jane Taylor (1806) to the tune of Ah vous dirai-je, Maman(c.1740).  First published in 1761  (melody)  and 1774  (with lyrics). Rearranged by many  composers,  including Mozart (1781).
 
Ça Ira  (May 1790) evolved from tame lyrics by the street-singer Ladré,
on a popular tune, known as Carillon national, due to Bécourt (1785).
 
La Marseillaise  (1792-04-25)  by Rouget de Lisle  (1760-1836).
La Carmagnole  (Anonymous, 1792-08-10)
Chant du départ (1794) by Chénier (1764-1811) and Méhul (1763-1817).
 
Emperor Quartet (1797) by Joseph Haydn (1732-1809).
 
Moonlight Sonata (1801) by Ludwig van Beethoven (1770-1827).
5th Symphony, in C Minor(c.1806Ludwig van Beethoven (1770-1827).
Für Elise (1810) by Ludwig van Beethoven (1770-1827).
Unfinished Symphony (1822) by Franz Schubert (1797-1828).
Military March (1822) by Franz Schubert (1797-1828).
Ode to Joy (1824) by Beethoven.  Lyrics (1785)  by Schiller (1759-1805).
 
William Tell Overture (1828) by Gioachino Rossini (1792-1868).
La Campanella (1838, 1851) by Franz Liszt (1811-1886).
Ride of the Valkyries (1854) by Richard Wagner (1813-1883).
 
Sweet Betsy from Pike (PA). Lyrics by John A. Stone (c.1858)
to the tune of the British broadside ballad  entitled William and Dinah.
 
Battle Hymn of the Republic(1861)byJulia Ward Howe (1819-1910)
to the tune of John Brown's Body,from the folk hymn Oh!  Brothers.
 
When Johnny Comes Marching Home(1863)  by Patrick Gilmore.
 
Le temps des cerises(1866)  by
Jean-Baptiste Clément (1836-1903) and Antoine Renard (1825-1872).
 
Night on Bald Mountain (1867Modest Mussorgsky (1839-1881). Fantasia.
Brahms' Lullaby(1868Johannes Brahms (1833-1897). Celine Dion (1998).
Fifth Hungarian dance (1869Johannes Brahms (1833-1897) &Béla Kéler.
The Moldau = Vltava (1874)  by Bedrich Smetana (1824-1884).
1812 Overture (1880)  by Pyotr Ilyich Tchaikovsky (1840-1893).
Dance of the Sugar Plum Fairy (The Nutcracker,1892) by Tchaikovsky.
Gymnopedia (1888) by Erik Satie (1866-1925).
New World Symphony (1893)  by Antonín Dvorák (1841-1904).
Prélude à l'après-midi d'un faune (1894)  by Claude Debussy (1862-1918).
Also sprach Zarathustra (1896)  by Richard Strauss (1864-1949).
Entry of the Gladiators (1897)  by Julius Fucík (1872-1916).
Maple Leaf Rag (1899)  by Scott Joplin (c.1868-1917).
Flight of the Bumblebee (1900). Nikolai Rimsky-Korsakov (1844-1908).
Second piano concerto (1900)  by Sergei Rachmaninoff (1873-1943).
La Mer (1905)  by Claude Debussy (1862-1918).
 
Sous les ponts de Paris (1913)  by
Jean Rodor (1881-1967) and Vincent Scotto  (1874-1952).
 
El Cóndor Pasa (1913) by Daniel Alomía Robles (1871-1942). [sheet music]
Colonel Bogey March (1914) by Kenneth J. Alford (1881-1945).
Tico-Tico no fubá (1917) by Zequinha de Abreu (1880-1935).
 
Rhapsody in Blue(1924)  by George Gershwin  (1898-1937).
Tea for Two(1924):Vincent Youmans (1898-1946)Irving Caesar (1895-1996).
Sweet Georgia Brown(1925)  by Ben Bernie  (1891-1943).
Nessun Dorma. Aria from the opera Turandot  by Giacomo Puccini (1924) and Franco Alfano  (1926).
I Wanna Be Loved by You(1928Helen Kane  inGood BoyStothart &Ruby.
Malagueña (1933) by Ernesto Lecuona (1896-1963).
 
Summertime(1934)inGershwin'sPorgy and Bess; most recorded song ever!
Billie Holiday,Ella Fitzgerald + Louis Armstrong,Nina Simone,Norah Jones.
 
Chime Bells (1939) by Elton Britt (1913-1972). Cover by Jewel (1974-).
Dance of the Knights (1935) by Sergei Prokofiev (1891-1953).
Sing, Sing, Sing (1936) by Louis Prima (1910-1978). Benny Goodman.
(O Fortuna) Carmina Burana (1936) by Carl Orff (1895-1982).
When the Saints Go Marching In (1923). Louis Armstrong (1938-05-13).
Orange Blossom Special (1939) by Ervin T. Rouse (1917-1981).
 
In the Mood, popularized in 1939 by Glenn Miller (1904-1944)
was a cover ofTar Paper Stomp(1929) byWingy Manone (1900-1982).
 
Concierto de Aranjuez(1939) by Joaquín Rodrigo (1901-1999).
Sabre Dance(1942)  by Aram Ilyich Khachaturian  (1903-1978).
 
Chant des Partisans(1943)  by Anna Marly  (1917-2008).
Lyrics due to Maurice Druon (1918-2009) &Joseph Kessel (1898-1979).
 
La vie en rose(May 1945)  by Edith Piaf  (1915-1963),  music by Louiguy.
Padam, padam... (1951Edith Piaf (1915-1963). Glanzberg &Contet.
Rock around the Clock (1952)  by Max_C._Freedman &James E. Myers.
Second Waltz (1955)  by Dmitri Shostakovich (1906-1975).
 
Tutti Frutti (1955) by Little Richard  (1932-2020)
and Dorothy LaBostrie  (1928-2007).
Fever (1956)  by Eddie Cooley (1933-2020) &Otis Blackwell (1931-2002).
Recorded by Little Willie John in 1956andPeggy_Lee (1920-2002) in 1958.
 
Que sera sera (1956Doris Day (1922-2019). By Livingston &Evans.
Elvis PresleyHound Dog (1956) &Jailhouse Rock(1957). Leiber & Stoller.
Johnny B. Goode (1958)  by Chuck Berry (1926-2017).
La Bamba (1958)  by Ritchie Valens (1941-1959).  Mexican folk song.
So What? (1959) by Miles Davis (1926-1991).
Take Five (1959) by Paul Desmond (1924-1977). Dave Brubeck quartet.
Volare (1959Domenico Modugno (1928-1994) in Nel blu dipinto di blu.
 
Ta Pediá tou Pirée (1959) Manos Hadjidakis  (1925-1994). Melina Mercouri.
Les enfants du Pirée (1960): Cover by Dalida (1933-1987).
(Never on Sunday) Ann-Margret,The Chordettes,Connie Francis,Don Costa,Margarita,Konstantina,Nana Mouskouri (1968),Bouzouki, etc.
 
What a Diff'rence a Day Makes (1934, in Spanish) María Grever (1885-1951).
Made famous in English by the 1959 coverof Dinah Washington (1924-1963).
 
Michael Row the Boat Ashore (1960) by The Highwaymen.
The Flintstones (1961) by Hoyt Curtin (1922-2000) of Hanna-Barbera.
James Bond Theme (1962) by Monty Norman (1928-).
The Girl from Ipanema (1962Antônio Carlos Jobim  (1927-1994). Analysis.
Ring of Fire(1963June Carter-Cash  (1929-2003). Johnny Cash (1932-2003).
You Really Got Me (1964) by Ray Davies  (1944-) The KinksMixolydian.
My Girl (1964) by Smokey Robinson  (1940-)  for The Temptations.
Satisfaction(1965Mick Jagger  (1943-) &Keith Richards (1943-).
Mustang Sally(1965Mack Rice  (1933-2016). Wilson Pickett's 1966 cover.
Yesterday(August 1965)  by Paul McCartney &John LennonThe Beatles.
Mission Impossible (1966)by Lalo_Schifrin  (1932-).
The Good, the Bad and the Ugly (1966)by Ennio Morricone (1946-2020).
Purple Haze (March 1967)by Jimi Hendrix  (1942-1970). Analysis.
Brown-Eyed Girl (March 1967)by Van Morrison  (1945-).
A Whiter Shade of Pale (May 1967)debut album of Procol Harum [Organ].
All you need is love(July 1967John Lennon. Worldwide TV:1967-06-25.
Les moulins de mon cœur(1968) by Michel Legrand (1932-2019).
Hey Jude(August 1968Paul McCartney. First song recorded for Apple.
Sugar, Sugar(1969)  by Jeff Barry (1938-)  & Andy Kim (1952-).
Aquarius(1967The Fifth Dimension.  By Rado andRagni forHair (1967).
Bridge over Troubled Water(1970)Paul Simon (1941-). Simon & Garfunkel.
In the Summertime(1970)  by Mungo JerryRay Dorset (1946-).
Rivers of Babylon(The Melodians1970). Cover by Boney M (1978).
Mamy Blue(1970)  by Hubert Giraud (1920-2016). In English byPop-Tops.
Ain't no sunshine(1971)  by Bill Withers(1938-2020).
(Where do I begin?) Love story(1971)  by Andy Williams (1927-2012).
Stairway to Heaven(1971)  by Led Zeppelin  (together 1968-1980).
A Horse with no Name(1971)  by Dewey Bunnell (1952-). America.
Godfather Theme(1972)  by Nino Rota (1911-1979) fromFortunella (1958).
Killing Me Softly with His Song(1972Roberta Flack (1937-). Fox &Gimbel.
I Shot the Sheriff(1973Bob Marley (1945-1981). Eric Clapton'scover (1974).
Angie(August 1973)  by Keith Richards (1943-). The Rolling Stones.
La Jument de Michao(1973)  revived by Kouerien.
All by Myself(1975;1996cover byCéline Dion)  by Eric Carmen (1949-).
Hotel California(1977) by  the The Eagles  (1971-).
We will rock you(1977) by Brian May (1947-) andQueen.
Star Wars(1977) by John Williams (1932-).
Stayin' Alive(1977) by  the Bee Gees for Saturday Night Fever.
You're The One That I Want(1978) by John_Farrar (1947-)for Grease.
Superman March(1978John Williams (1932-) for Superman: The Movie.
I will survive(1978Gloria Gaynor (1943-). By Perren&Fekaris.
Heart of Glass(Blondie1978Debbie Harry (1945-)&Chris Stein (1950-).
Girls Just Want To Have Fun(1979 byRobert Hazard). Cyndi Lauper  in 1983.
Highway to Hell(1979, AC/DC)  byBon Scott,Angus &Malcolm Young.
The wall(1979) by Pink Floyd (active 1965-1995, 2005).
Whip It(1980) by Devo (est. 1973).
On the Road Again(July 1980) by Willie Nelson (1933-).
Chariots of Fire(1981) by Vangelis (1943-).
Sweet Dreams(1982)  by Annie Lennox (1954-)  & Dave Stewart (1952-).
Beat it(1982)  by Michael Jackson (1958-2009). Quincy Jones (1933-).
Every Breath You Take(1983) by Sting (1951-) and The Police.
What a Feeling(1983) by Irene Cara (1959-) for the film Flashdance.
Time After Time(1983) by Cyndi Lauper (1953-) and Rob Hyman (1950-).
Like a Virgin(1984Madonna (1958-).  By Kelly andSteinberg.
Hallelujah(1984). Leonard Cohen (1934-2016). 2016 cover byPentatonix.
What's love got to do with it?(1984Tina Turner (1939-).
Axel F(filmBeverly Hills Cop,1984) by Harold Faltermeyer (1952-).
Sweetest Taboo(1985)  by Sade (1959-).
We are the World(1985Michael Jackson,Lionel Richie, USA for Africa.
Take my breath away (1986) by Berlin for the film Top Gun.
Time of my Life(1987)  by Bill Medley (1940-) & Jennifer Warnes (1947-).
 Homer Simpsons The Simpsons(1989Danny Elfman (1953-). Lydian Dominant.
Smells Like Teen Spirit(1991)  by Nirvana (est. 1987).
Macarena(1993)  by Los del Río (est. 1962).
Livin' La Vida Loca(1999)  by Ricky Martin (1971-).
All Star(1999)  by Greg Camp (1967-) for Smash Mouth.
I Kissed a Girl(2008)  by Katy Perry (1984-) & Max Martin (1971-).
Bad Romance(2009)  by Lady Gaga (1986-) & Nadir Khayat (1972-).
We No Speak Americano(2010). Yolanda Be Cool (2009-)&DCUP (1985-).
Rolling in the Deep(2010)  by Adele (1988-) & Paul Epworth (1974-).
Rescue(2019)  by Lauren Daigle (1991-). Label: Centricity Music.

Harmonic Dualism  by Hugo Riemann (1849-1919).
Twentieth-century Harmony  (1961)  by Vincent Persichetti (1915-1987).
Gödel, Escher,Bach (1979)  by Douglas R. Hofstadter (1945-).
A Theory of Harmony  (1985)  by Ernst Levy (1895-1981).
The New  Harvard Dictionary of Music,  edited by Ron Handel (1986).
The Mathematical Theory of Sound Systems  by Jan Haluska.
Arpeggio& Scale Resources:  A Guitar Encyclopedia  by Rich Cochrane.
TonalHarmony (2004 / 7th edition 2013)  by Kostka,Payne &Almén.
The Topos of Music  (2002, 2018, 4 volumes) by Guerino Mazzola (1947-).
 
The Sounds of Music (1:48:36) by Walter Lewin  (MIT, 1996-06-25).
Resonance, Musical Instruments (1:20:24) Walter Lewin  (8.03 #9, 2004-10-07).
Clarinet-Flute hybrids (2:39) by Joe Wolfe (UNSW, 2011-05-05).
On the Music of Shapes (1:11:25) by Alain Connes  (Lille, 2012-09-26).
Physics of Music (10:34) by Shini Somara  (CrashCourse, 2016-08-11).
How Computers Ruined Rock Music (19:53) by Rick Beato  (2019-04-13).
The Fascinating World Inside of a Piano(30:52) Damon Groves  (2019-06-10).
What do the pedals on a piano do? (6:54) Hugh Sung  (Cunningham Piano).
Synthesizers, Digested by a Classical Musician(16:54) Nahre Sol  (2019-08-06).
György Ligeti:  The M.C.Escher of Music(20:42) David Bruce  (2020-07-14).
Music & Symmetry(8:08) Santa Fe Institute  (2014-02-28).
Mathematical Music (49:01)  by Alan Stewart  (Numberphile, 2013-06-04).
Math & Music byJamie York (2012): 13:11c,13:34c,13:59c,14:19c,14:40c.
The Rule of the Octave(24:03) Early Music Sources  (2021-04-16).
The Greatest Solo of All Time (17:25) Oscar Peterson  (Rick Beato, 2021-07-20).
Evolution of Music: AD 1680-2017 (6:17) by Lord Vinheteiro  (2017-10-03).

border
border

Mathematics of Music


(2020-07-27)  
A codification inherited from the late Bronze Age.

LydiaPhrygiaLocrisIoniaAeolisDoris

 Come back later, we're still working on this one...


(2018-07-27)  
An overlooked ingredient in the evolution of music.

 Come back later, we're still working on this one...


(2018-02-23)  
Musical notation helped crystallize the evolution of Western art music.

From AD 600 to 1500 or so  (whenneumes came into wide use) Gregorian chants  were mostly transmitted orally. The Church recognized eight official modes  (the first and the last one being identical) each nominally spanning eight  notes  (hence the name octave for the doubling interval  so spanned).

The common note  starting and ending an octave was called the final (now dubbed tonic or tonal center) because of the rule that a chant must end on that noteto provide a sense of resolution.  That expectationis created by giving prominence to the tonic,  not necessarily by starting with it (e.g., Dies Irae  is in D-Dorian but starts with the ominous four notes F-E-F-D). The eight Gregorian modes span a combined range of two vocal octaves.

G4 and A4 are shared by all modes.  The latter became the standard  for tuning.  The former is what the treble clef  points to (G-clef,clef de sol ).

Traditional Symmetrical 8-way Definition of the Church Modes:
IDorian D EF G4 A4 BC D 
IIHypodorianA3 BC DEFG4A4 
IIIPhrygian EFG4A4 BC D E 
IVHypophrygian BC D EFG4A4B 
VLydian FG4A4BC D EF 
VIHypolydian C D EFG4A4BC 
VIIMixolydian G4A4BC D EF G5
VIII Hypomixolydian  D EF G4A4BCD 

Each even-numbered plagal mode is named by adding the prefix hypo-  to the authentic odd-numbered mode which precedes it. In De Harmonica  (c. AD 880) Hucbald  specified the plagal mode as running fromonefourth below the authentic mode's final  to onefifth above it,  as tabulated above. The last mode  (Hypomixolydian)  is identical to the first one  (Dorian).

The arbitrary distinction between authentic and plagal modes is now all but lost and threenew words have been coined for the former hypo-  modes, namely the two most popular modern modes (ionian  and aeolian; better known as Major and Minor)  and the least popular one (locrian). As all of the above Gregorian modes are diatonic,  they canbe matched with the modern modes of the major scale. Actually, the Medieval modes denoted not only a mode  (in the modern sense) but a specific key (at a fixed pitch)  according to the following equivalences:

Modern equivalents of the  7  unique Medieval Gregorian modes
Medieval mode  Mode of C-Major  Circle of fifths
VLydian4F-LydianF
VIHypolydian1  C-Ionian   (C major)  C
VIIMixolydian5G-MixolydianG
  VIII    Hypomixolydian    2  D-DorianD
IDorian
IIHypodorian6  A-Aeolian  (A minor)  A
IIIPhrygian3E-PhrygianE
IVHypophrygian7B-LocrianB

The rotation placing  Dorian = Hypomixolydian  in the middle,  rather than at bothends,  reveals a deeper symmetry (mirror inversion of the interval structure)  among the seven distinct  modes. This ordering also puts them in strict order of brightness, with  B-Locrian last and least  (all but unused).

The Beginning of Western Musical Notation :

The musical staff was devised by Guido of Arezzo  early in the 11-th century. He used a 4-line  staff and recommended the use of yellow and red ink.

 Come back later, we're still working on this one...


(2018-02-16)  
Binary progression of standard durations  (dotting prolongs by  50%).

note  is an elementary music element with nearly constant pitch and prescribed duration.

A quarter-note is represented by a black oval with either an upward stem to the rightor a downward stem to the left  (the French just call it "a black";une noire). A half-note has twice the duration and is represented by a void oval with a stem (French: une blanche). A whole note is a void oval without stem;  it's worth two half-notes or four quarter-notes.

Moving in the other direction,  a flag on the stem of a quarter-note reduces its durationby a factor of two and makes it an eighth-note  (a quaver to the British, une croche  to the French). Two flags indicate a sixteenth  (French: double-croche). Occasionally,  three flags are used to denote a thirty-second  (French: triple-croche). Four or five flags are rarely used.

Note Durations   (and the corresponding silence periods)
DurationAmericanBritishFrench
 8LargaLargeMaxime
(silence de maxime)
 4Quadruple note
(quadruple rest)
Longa
(longa rest)
Longue
(silence de longue)
 2Double note
(double rest)
Breve
(breve rest)
Carrée
(bâton de pause)
 1Whole note
(whole rest)
Semibreve
(semibreve rest)
Ronde
(pause)
 1/2Half note
(half rest)
Minim
(minim rest)
Blanche
(demi-pause)
 1/4Quarter note
(quarter rest)
Crotchet
(crotchet rest)
Noire
(soupir)
 1/8Eighth note
(eighth rest)
Quaver
(quaver rest)
Croche
(demi-soupir)
 1/16Sixteenth note
(sixteenth rest)
Semiquaver
(semiquaver rest)
Double croche
(quart de soupir)
 1/3232nd note
(32nd rest)
DemisemiquaverTriple croche
 1/6464th note
(64th rest)

A dot after a symbol extends its duration by  50%.  A double-dot by  75%.

Two or more consecutive flag-bearing notes are beamed  together with as many beams touching each note's stem as the number of flags it ought to have. Rest symbols are allowed between beamed notes.

 Come back later, we're still working on this one...


(2018-02-16)  
How fast to play.

In Western culture,  a musical piece is a sequence of monophonic or polyphonic tones, timed by regular beats. The tempo is either indicated by a traditional Italian locution or given preciselyin beats per minute  (bpm). 

Metronomes are traditionally marked at the following values,  in bpm: 40,  42,  44,  46,  48,  50,  52,  54,  56,  58,  60, 63,  66,  69,  72,  76,  80,  84,  88,  92,  96,  100, 104,  108,  112,  116,  120,  126,  132,  138,  144,  152, 160,  168,  176,  184,  192,  200,  208.

  Traditional    Beats per Minute  
Larghissimo24 bpm and below
Grave24 bpm - 40 bpm
Largo40 bpm - 60 bpm
Larghetto60 bpm - 66 bpm
Adagio66 bpm - 76 bpm
Andante76 bpm - 100 bpm
Moderato100 bpm - 120 bpm
Allegro120 bpm - 168 bpm
Presto168 bpm - 200 bpm
Prestissimo200 bpm and over

There's little need to perform below  30  bpm (one beat every other second) which is roughly the slowest tempo at which the human brain still linksthe elements of a sequence as parts of a whole.  Slower changes in tonality areperceived as separate discrete events and the melody is just lost in time.

At the other extreme,  too fast a tempo will not give the brain enough timeto grasp subdivisions in individual beats. Ultimately,  when something changes more than  20  times per second (20 Hz or 1200 rpm)  it's simply heard as a buzz. That's when rapid clicks morph into a continuous pitch.

Historically,  the earliest scientific unit of time chosen by Galileo was roughly the shortest time interval at which he couldn't perceive two percussions as distinct (about  11 ms  in modern terms). At face value,  that would imply that we perceive as separate two cycles of a 9 Hz sound, if the conditions are right (although  540 bpm  is musically meaningless).


(2018-02-16)  
4/4 common time : 4  beats to a bar  and  4  or  8  bars to most phrases.

Beats are regularly-spaced time intervals. In dance-music,  they follow the kick drum. Otherwise,  a metronome  can be used, which delivers regular clicks and visual cues.

A whole number of beats make up a measure (also called bar  because the limits of all measures are indicated by vertical bars on sheet music).  That number depends on the time signature, discussed in the next section.

A rhythm where some notes are stressed on the upbeat  (between main downbeats) is called syncopated. In the rare cases where a note straddles two measures,  it is said to be offbeat.

Time signature  (French:chiffrage)

On sheet music,  this is indicated at the beginning of the first staff  by two superposed numbers which summarize the rhythm. In simple time  (as opposed tocompound time, discussed next) the top number gives the number of beats per bar. The bottom number says which type of note counts for one beat (2 for a half-note per beat,  4 for a quarter-note per beat,  8 for an eighth-note per beat). For example,  3/4  is often read  "3 beats per bar and every quarter-note gets a beat".

March time  is simply  1/2. The  4/4  signature is called common time. The  3/4  time-signature is waltz time.

Less common time signatures include  5/4,  of which a prime example (with offbeat notes)  is Take Five  by the late Dave Brubeck (1920-2012).

Pink Floyd's Money  (1973) alternates  3/4  and  4/4,  withoffbeat notes.

Compound Time :

When the time signature's top number is a proper  multiple of three (6, 9, 12, 15, 18, 24, etc.)  each beat is understood to be dividedinto three equal divisions.  The number itself indicates how many such divisions there arein a bar  (not  the number of beats per bar, as is the case with simple time).

Thus,  a bar in  6/8  has two beats divided intothree equal parts,  worth an eighth-note each. A famous example of  6/8  is the folk song Rising Sun Blues,  popularized as House of the Rising Sun, by The Animals  (1964).


(2018-02-16)  
Trained musicians have trouble playing offbeat Triplets at a slowtempo.

Triplet  is usually just a group of three notes of equal durationsmeant to be played with the same total duration as two notes of the indicated kind. A Triplet is indicated by a bracket with the numeral 3.

Thus,  the duration of a Whole-note  is divided equally intothree Triplet-halves. Likewise,  a Half  is split into three equal Triplet-quarters.

More generally,  a triplet bracket  (i.e.,  a bracket with the numeral 3) reduces all note durations within it by a factor of  2/3. The bracket itself is optional if the notes are already beamed  together.

Likewise,  a bracket  (or a beam) bearing the numeral  n  reduces the duration of the notes it spans by a fixed fraction ofdenominator  n.  That construct is known as a tuplet  (or an n-tuplet,  when  n  is specified). Numerical Greek prefixes  (and/or some Latin alteration thereof) can also be used:

  • Triplets.  Factor of  2/3  (always).
  • Pentuplets,  Quintuplets  or Quintolets. Factor of  4/5  (3/5  incompound time).
  • Heptuplets,  Septuplets, Septolets  or 

 Come back later, we're still working on this one...


(2018-02-13)  
Eight possible performance marksppp   pp   p   mp   mf   f   ff   fff

 Come back later, we're still working on this one...


(2018-02-13)  
Describing sound in terms of a superposition of frequencies.

 Come back later, we're still working on this one...


(2018-02-12)  
The codified language of Western music has its native speakers.

About one in 10000 people have developed native familiarity with the languageof music by being exposed to its complexity at a very young age. The most striking ability they develop is called perfect pitch (or absolute pitch)  which is the ability to instantlyname a note or a combination of notes with perfect accuracy withoutthe benefit of prior tuning. This ability cannot  be acquired later in life.

 Come back later, we're still working on this one...
 Note names on the Grand Staff (Great Stave)

 One octave on the piano keyboard

A take-home message of this diagram is that D, G and A have no other names.

The syllabic names below  (first column)  are used inRomance and Slavic languages.  In English, Sol  is pronounced So and Si  is called Ti (thus avoiding a possible confusion with the letter "C",  for Ut  or Do).

Equally-Tempered Frequencies of Western Notes,  in  Hz  (A440  pitch)
 
ISO #012345678
DoC16.3532.7065.41130.81261.63523.251046.502093.004186.01
 C#17.3234.6569.30138.59277.18554.371108.732217.464434.92
D18.3536.7173.42146.83293.66587.331174.662349.324698.64
 D#19.4538.8977.78155.56311.13622.251244.512489.024978.03
MiE20.6041.2082.41164.81329.63659.261318.512637.025274.04
FaF21.8343.6587.31174.61349.23698.461396.912793.835587.65
 F#23.1246.2592.50185.00369.99739.991479.982959.965919.91
SolG24.5049.0098.00196.00392.00783.991567.983135.966271.93
 G#25.9651.91103.83207.65415.30830.611661.723322.446644.88
LaA27.555110220440880176035207040
 A#29.1458.27116.54233.08466.16932.331864.663729.317458.62
Si/TiB30.8761.74123.47246.94493.88987.771975.533951.077902.13

C4  is called middle C  and standard  concert A (A,  440 Hz)  is dubbed A above middle C. Each octave starts at a  C  and ends with the  B  above it. Treble C  (C5)  is better known to Opera afficionados as Tenor High C since it's the highest note in the classical male repertoire.

 Full 88-key piano keyboard

On an 88-key piano,  the lowest note is  A0 ( 27.5 Hz ).  The highest is C8  ( 4186.009 Hz ) which is the lowest note of Octave 8,  in ISO numbering.

In the above scientific pitch notation (SPN, used everywhere with growing popularity) the  ISO  number of each octave is used after the name of a pitch (following the # orb accidentals, if any) to denote a particular tone unambiguously. Subscripting is optional:  A4  and  A4  both mean  440 Hz.

Other competing systems are still in use,  which are mutually incompatible to some degree. In all cases,  tones in the same octave  (always from C to B, mercifully)  are denoted alikeand we give only the notation corresponding to "C"  (Do, Ut)  in the followingtable.  Musicians routinely speak of a particular tone by identifying the "C"just below it  (e.g., 440 Hz  is "A above middle-C" orconcert A,  less often "middle A").

Competing ways of naming an octave  (C to B)  and/or the  C  tone it starts with :
 
Octave #012345678
ScientificC0C1C2C3C4C5C6C7C8
YamahaC-1C0C1C2C3C4C5C6C7
Helmholtz
(1863)
Helmholtz
C,,
,,C
CCC
C2
2C
C,
,C
CC
C1
1C
Ccc'
c1
c''
c2
c'''
c3
c''''
c4
c'''''
c5
LilyPondc,,,c,,c,cc'c''c'''c''''c'''''
 
Alternate

The  "lowoctave, between contra  and bass,  is also called  "great bass".

The usual female classical opera repertoire extends to Soprano Bb  (Bb5; one whole tone below C6; Soprano C, High C or Top C). Legendary prima donnas have routinely gone beyond this, up to and including  G#6.

The highest note ever sung in a regular performance at New-York's Met Opera was A above high-C  (A,  1760 Hz)  by soprano Audrey Luna  as the very first note of Leticia  in The Exterminating Angel  by Thomas Adès  (2017). Shecan  sustain C above high-C  (C,  2093 Hz)  at full voice.

In 2003, Maria Carey  hit a  G7  (3136 Hz)  during a public rendition of The Star Spangled Banner. For the Guinnessbook of world records,  singer Adam Lopez smashed his own previous record for a male vocalist (D,  2349 Hz)  by almost a full octave.when he hit a  C#8  (4435 Hz) in front of a live studio audience  (2008). That's one semitone beyond  the piano range.

An urban legend says that the record for a female vocalist is a  G10 by Brazilian singer Georgia Brown. This is silly;  a  G10  would be squarely ultrasonic and inaudible  (25 kHz).  In the video,  she does hit a very respectable A#7  (3729.31 Hz).  Three semitones above Maria Carey's Gnot  three octaves above it.  (Did someone confuse semitones and octaves?)


(2020-06-18)  
Alternate choices of frequencies for  "A above middle C"  (A4).

The tuning fork  was invented in 1711 by John Shore (c.1662-1752). Before that time,  the only records of bygone tunings are extant organ pipes.

415HzBaroque low-pitch  (modern convention).
422HzClassical pitch  (Mozart, Beethoven, ...).
423.2HzDresden Opera House  (1815).
430.54HzPhilosophical pitch. Sauveur  pitch (1713).
432HzPromoted as "Verdi tuning" by LaRouche followers.
435HzFrench standard  (1859-02-16)  until 1936.
440HzNormal pitch (since 1936).  Stuttgart pitch.  A440.  ISO 16.
442HzSymphonic pitch.
452.5HzPhilarmonic pitch.  British Army.  Brass-bands.
457HzUS military high-pitch.
466HzRenaissance high-pitch  (modern convention).
506HzGreat organ at Halberstadt  (Nicholas Faber, 1361).

The only  (musically irrelevant)  virtue of the philosophical pitch  is to make any  "C"  awhole number of Hz, down to  C-4 = 1 Hz,  using:

A4   =   2 8.75 Hz  =   430.5389646099018460319362438314... Hz

Likewise,  432 Hz  gives a whole value in Hz to any  A  above A0 = 27 Hz (compared to  A0 = 27.5 Hz  under the standard  A440  tuning system).

The 415 and 466 Hz tuning are recent conventions corresponding to justone semitone lower or higher than the A440 modern standard  (1936). This appeals to musicians who want a better historical authenticityfor periods when standard tuning was notoriously higher or lower than today. That solution is also compatible with electronic instruments which routinely offer the abilityto transpose up or down by a whole number of semitones.

Part of this is a fad. Most of us,  mere mortals not blessed or cursed withperfect pitch, can't tell the difference when everything is transposed by a semitone. However,  it's true that a violin tuned one semitone higher will havea slightly richer harmonic content which can be perceptible  (at leastby the same kind of people, with or without perfect pitch, who can tellaStradivarius from a lesser instrument). This once drove pitch inflation.


(2018-02-23)  
A staff consisting of 5 lines (4 spaces) can be extended with ledger lines.

Between the bass and treble staff,  there would normally be room for just a single ledger line corresponding to middle C.  However, the two staves are normally interpretedon the piano by the two hands  (bass staff for the left hand and treble staff for the right hand) and they are printed with enough room between them to allow for several ledger lines. Middle C  and the adjoining notes are printed either withthe bass staff or with the treble staff, depending on which hand is meant to play them.


(2018-02-18)  
A grand-piano keyboard has 88 keys  (some rare pianos have 92 or 97). Two-octave 97-key keyboard

 9 extra bass keys  

Organ manuals  almost always go from  C  to  C.  Full-sized ones span five  octaves  (61 keys)  more rarely six  (73 keys)  or seven  (85 keys) as found only in a few very large organs meant to play  C (16 Hz or so)  the lowest note in the classical repertoire, which is felt  more than it is heard :

 Full 88-key piano keyboard

Historically,  most organ keyboards spanned only four octaves  (49 keys). Small  37-key  manuals are also found. The pedalboards  of traditional organs have between  12  and  32  keys.

Twelve sizes of electronic keyboards are widely availablein the sixteen different layouts illustrated below. As these keyboards can often be shifted at will by a whole number of octaves, the highlighted positions may not always play as middle C  or concert A .

8 white
keys
  13-key keyboard C-C
25 keys  Two-octave 25-key keyboard
 
Smallaccordion
C-C
32 keys  32-key keyboard
Casio Rapman
(1991)
F-C
32 keys  32-key keyboard C-G
37 keys  37-key keyboard F-F
37 keys  37-key keyboard C-C
44 keys  44-key keyboard F-C
49 keys  49-key keyboard C-C
54 keys  54-key keyboard C-F
61 keys  61-key keyboard C-C
64 keys  64-key keyboard A-C
  73-key keyboard 73
  73-key keyboard 73
  73-key keyboard 73
  76-key keyboard 76
 Full 88-key piano keyboard

Both ends of the 64-key  keyboard match the layout of a grand piano. This pattern helped make all Wurlitzer electric pianos popular,  from 1954 to 1984  (besides a rare 44-key simplified classroom model). The design was revived in the recently-discontinued Roland RD-64  (introduced in 2013)  which was unique in its class, with  64  weighted hammer-action keys.  With controls to the left, the RD-64 is about as long as a 73-key keyboard.


(2017-04-09)  
Ratios of sound frequencies.

Harmony is perceived when two tones are heard whose frequencies arein a ratio close to the ratio of two small integers. The smaller the integers,  the greater the impression of harmony. Thus,  the octave is the most harmonious interval  (2:1 ratio) besides unison  (1:1 ratio). The fifth  (3/2 ratio)  is not far behind.

Pure Natural Consonant Intervals :

Two consonant  tones are characterized by frequencies in asimple ratio  (i.e., the ratio of two small  integers). A musical interval is a frequency ratio. Natural consonant intervals are thus ratio of small integers. The most important ones have traditional musical  names:

Pure Intervals and Equal-Tempered Approximations Thereof
RatioEnglishFrenchApproximationSemitones
1 : 1UnisonUnisson10
16 : 15Half-toneDemi-ton1.059463094361  (+0.11731)
10 : 9Lesser tone1.122462048312  (0.17596)
9 : 8Whole tone2  (+0.03910)
8 : 7Septimal tone2  (+0.31174)
7 : 6Septimal Minor Third1.189207115003  (0.33129)
6 : 5Minor thirdTierce mineure3  (0.15641)
5 : 4Major thirdTierce majeure1.259921049894  (+0.13686)
4 : 3FourthQuarte1.334839854175  (0.01955)
7 : 5Lesser SeptimalTritone1.414213562376  (0.17488)
10 : 7Greater SeptimalTritone6  (+0.17488)
3 : 2FifthQuinte1.498307076887  (+0.01955)
8 : 5Minor SixthSixte mineure1.587401051978  (0.13686)
5 : 3Major SixthSixte majeure1.681792830519  (+0.15641)
12 : 7Septimal Major Sixth9  (+0.33129)
7 : 4(Septimal)Harmonic Seventh1.7817974362810  (0.31174)
16 : 9Minor Seventh10  (0.03910)
9 : 5GreaterMinor Seventh10  (+0.17596)
15 : 8Major Seventh1.8877486253611  (0.11731)
2 : 1OctaveOctave212

Note the perfect vertical symmetry of the above table with respect to the horizontalline which separates the two kind of tritones.  The product of the ratios (from the first column) in symmetrical pairsis equal to 2.  Equivalently, their values in semitones  (last columns) add up to 12.  Musicians call that symmetry an inversion (French: renversement). For example,  the septimal major sixth  is the inversion of the septimal minor third  (both of those are quite rare).

One percent of a semitone is called a cent. The fourth  and the fifth.  have excellent chromaticapproximations, which are less than 2 cents  off (that's impossible to detect by ear).  Likewise for the whole tone (9:8)and minor seventh (16:9)  which are less than 4 cents off.

The other important musical intervals appearing in unshaded entries have goodenough chromatic counterparts,  which are respectively off by only 11.7,  15.6  and  13.7 cents, for the half-toneminor thirdmajor third  and their respective inverses. This is the happy coincidence  (a minormathematical miracle) which made equal-tempered Western music possible.

A chromatic whole step is also close enough to the  10:9  natural harmony  (lesser tone).

The septimal intervals  (involving the seventh harmonic of fundamental sounds) are rarely found outside of Blues  nowadays, starting with the lesser septimal tritone  (7:5) also known as the septimal ofHuygens and its inverse,  the greater septimal tritone  (10:7)  also called Euler's tritone.

For intervals greater than an octave  (but less than two octaves)  musicians oftentalk about compound  intervals and will use a locution like compound major third  (compound M3)  instead of major tenth  (M10). Lesser musical names have been given to some intervals greater than an octave,  including:

  • 11:5   Neutral Ninth.  (A neutral second  is 12:11.  Very close to 1.5 semitones.)
  • 9:4   Major Ninth.
  • 7:3   Minimal Tenth.
  • 3:1   (Bohlen-Pierce) Tritave.

Besides unison and octaves,  there are  11  possible intervals inequal-tempered Western music.  Some are good approximations tothe consonant  pure  intervals. Others are dissonant.  Here's the complete list:

  • m2:  Minor second.  Half step  =  1 semitone.  Twelfth of an octave.
  • M2:  Major second.  Whole step  =  2 semitones.  (10/9 or 9/8 ratio).
  • m3:  Minor third.  Augmented second.  Quarter of an octave.  ( 6/5)
  • M3:  Major thirdThird of an octave.  (Approx. 5/4 ratio.)
  • P4:  Fourth.  Five semitones.  (Approx. 4/3 ratio.)
  • d5, A4:  Diminished fifth or augmented fourth.  Tritone.  6 semitones.
  • P5:  Fifth.  Seven semitones.  (Approx. 3/2 ratio.)
  • m6:  Minor sixth.  Eight semitones.  (Approx. 8/5 ratio.)
  • M6:  Major sixth.  Nine semitones.  (Approx. 5/3 or 12/7 ratio.)
  • m7:  Minor seventh.  Ten semitones.  (Approx. 9/5 or 16/9 ratio.)
  • M7:  Major seventh.  Eleven semitones.  (Approx. 15/8 ratio.)
  • P8:  Octave.  Twelve semitones.  (Exactly 2/1 ratio.)

 Come back later, we're still working on this one...


 Leonhard Euler (2020-08-20)  
Suavitatis Gradus   =   Degree of harmony  (suavity).

Arguably,  music builds on the ancient notion of commensurability: Two numbers are commensurable  when they are proportionalto two integers.  They are consonant  when those two integers are small. Consonance is thus not a quality that commensurable quantities possess or not; it's something they have to a greater or lesser degree  (Latin: gradus).

Euler's musical treatise Tentamen Theorae Novae Musicae  was completed in 1730  (when he was 23) but only published in 1939.  In it, Euler tried to quantify how pleasant two integers are when they measure musical frequencies heard together. This work didn't attract much interest at the time. It was said to be too mathematical for musicians and too musical for mathematicians.

It's clear at the outset that any two-variable function f  grading theconsonance of two numbers must be symmetrical and invariant by scaling (as the unit of frequency is entirely arbitrary):

f (p,q)   =  f (q,p)   =  f (kp,kq)   =  f (p/q, 1)

using the single-variable grading function  g(x) = f (x, 1)  symmetry implies:

g (x)   =   g(1/x)

Presented as a consequence of interchanging two tones whose consonance is being compared, this symmetry is obvious.  However,  this implies the nontrivial fact thatinverting all tones in a musical piece gives a totally different piece which is equallyharmonious.  A fact which was well-known to Johann Sebastian Bach (1685-1750),who made extensive use of thatsymmetry in some of his compositions. contemporary authors have dubbed related topics negative harmony.

 Come back later, we're still working on this one...

n12345678910111213141516171819202122232425
gE(n)1233547456115138751761979122369
g0(n)0122436345104127641651868112258

As  gE(n)  is always equal to g0(n)+1, either function is equally suited for comparisons. However  g0  possesses the rare property of being a totally additive function  which is to say that it ressemblesa logarithm:

g0 ( x y )   =   g0 (x)  +  g0 (y)

By contrast gE  seems flawed:  gE ( x y )   =   gE (x)  +  gE (y)  +  1

g0  is the difference of two standard (totally) additives functions,  bestdefined by their effects on the power of a prime  (pn):

  • A001414:  "Sum of prime factors"  sopfr (pn)  =  n p
  • A001222:  "Number of prime factors"   (pn)  =  n


(2018-02-15)  
Two conflicting musical intervals: Perfect fifth  (3:2)  & octave  (2:1).

perfect  fifth is a musical interval corresponding toa frequency ratio of exactly 3:2. Twelve of those intervals is slightly over  seven octaves:

1.5 12   =   129.746337890625           vs.           2 7   =   128

Therein lies the secret of Western music; this simple statement is the reason why we have  12  notesbut only use  7  of them in a given key.

 Come back later, we're still working on this one...


(2018-02-17)  
Diabolus in Musica.  The sound of a police siren.  Half an octave.

As an octave is a factor of  2, half  an octave is the square root of two.

1.4142135623730950488016887242...

The convergents of the square root of  2 are easily obtained from its continued fraction expansion [1;2,2,2,2,2,2,2...].  They are:

1,  3/2,  7/5,  17/12,  41/29,  99/70, 239/169,  577/408,  1393/985,  ...

The perfect fifth  (3/2)  isn't close enough to a tritone and the integers in the ratio  17/12  (1.416666...)  are not small enoughto qualify as harmony. So,  the closest harmonious approximation to a tritone is  7/5 = 1.4. That unusual interval is technically called the lesser septimal tritone. It's used in Blues.

Its musical inverse  (10/7)  is the greater septimal tritone. The ratio of those two tritones is 49/50 = 0.98. The lesser one is thus exactly  2%  below the greater one. That makes them about 0.35 semitones apart.


(2018-02-19)  
Current keyboards were made for the key of C major  (or A minor).

In the modern equal-temperament formally introduced by J.S. Bach, the chromatic scale  consists of the twelve pitches whose frequenciesform a geometric progression of constant ratio  1.059463...  (the twelfth root of 2) modulo factors of any power of two  (that's the learned way to say that frequenciesseparated by any whole number of octaves represent the same pitch and have the same namein Western art music).

The qualifier chromatic  also apply to any subset thereof whichis not strictly contained in a diatonic scale,  as described next.

Diatonic Scale :

The Western diatonic scale is the heptatonic  scale formedby the white keys of the piano,  or any transposition thereof. It includes only seven notes per octave.  The first one is called tonic, the fifth one dominant.

There are  12  major scales and  12  (natural) minor scales. Six of those  (3 major, 3 minor)  have twoenharmonic names (played alike but denoted differently).  So,  the 24 common diatonic  scales have 30 different names:

A  7-note  diatonic scale is named after its first note  (the tonic).  E.g.,  C-major.
Modes which share the same tonic are said to be  parallel.
Major ScaleMinor Scale
1 2 34 5 6 71 23 4 56 7 
F G ABb C D EF GAb Bb CDb Eb 
CDEFGABCDEbFGAbBb
GABCDEF#GABbCDEbF
DEF#GABC#DEFGABbC
ABC#DEF#G#ABCDEFG
EF#G#ABC#D#EF#GABCD
B
Cb
C#
Db
D#
Eb
E
Fb
F#
Gb
G#
Ab
A#
Bb
BC#DEF#GA
F#
Gb
G#
Ab
A#
Bb
B
Cb
C#
Db
D#
Eb
E#
F
F#G#ABC#DE
C#
Db
D#
Eb
E#
F
F#
Gb
G#
Ab
A#
Bb
B#
C
C#D#EF#G#AB
AbBbCDbEbFGG#
Ab
A#
Bb
B
Cb
C#
Db
D#
Eb
E
Fb
F#
Gb
EbFGAbBbCDD#
Eb
E#
F
F#
Gb
G#
Ab
A#
Bb
B
Cb
C#
Db
BbCDEbFGAA#
Bb
B#
C
C#
Db
D#
Eb
E#
F
F#
Gb
G#
Ab

The above is best called the natural minor scale (or descending minor scale).  It's a true diatonic scale (in the key of A, it uses only the white keys of the piano)  but it suffersfrom a flaw in ascending order in the sense that the last note,  calledthe subtonic,  is no longer just a semitone away from the tonic  (as is the leading tone  in the major scale) but a whole tone away...

To remedy that,  the harmonic minor scale  is introducedwhich raises the subtonic one semitone, back to leading tone status.  However, this fix introduces an unusual large gap of three  semitones betweenthe previous note  (the submediant)  and the subtonic/leading tone.

Another flavor of minor scale,  called the melodic minor scale is introduced which closes the gap by raising that previous note too. All told,  the melodic minor scale is obtained from the major scale simply by lowering just the third note  (so that the last four notesare separated by a whole tone). This is sometimes called the ascending melodic minor scale and it's so often used in Jazz  that it's most commonly known as the Jazz minor scale.

Neither the harmonic nor the melodic minor scales obey the diatonic pattern :
Harmonic Minor ScaleMelodic Minor Scale
1 23 4 56  71 23 4 5 6 7
F GAb Bb CDb  EF GAb Bb C D E
CDEbFGAbBCDEbFGAB
GABbCDEbF#GABbCDEF#
DEFGABbC#DEFGABC#
ABCDEFG#ABCDEF#G#
EF#GABCD#EF#GABC#D#
BC#DEF#GA#BC#DEF#G#A#
F#G#ABC#DE#F#G#ABC#D#E#
C#D#EF#G#AB#C#
Db
D#
Eb
E
Fb
F#
Gb
G#
Ab
A#
Bb
B#
C
AbBbCbDbEbFbGAbBbCbDbEbFG
EbFGbAbBbCbDEbFGbAbBbCD
BbCDbEbFGbABbCDbEbFGA

It's usually considered undesirable to have different accidentals on the key signatureof modern sheet music, as would happen in three of the above cases (G harmonic or melodic, and D harmonic).  The problem can be solved in those casesby using only flats in the key and raising the last note with an individual sharp whenever it occurs.

Pentatonic Scales :

One particular example of a pentatonic scale is  C-D-E-G-A. Another one is formed by the black keys of the piano,  starting with  F#.

Many examples of similar pentatonic scales exist outside of Western music.

 Come back later, we're still working on this one...


(2018-02-26)  Modes  (modes of the major scale)
key  is given by a tonic  and a mode (e.g.,  C-major  or  F-Lydian).

By definition, a diatonic scale consists of seven steps; two half-tones (H) separated by alternating groupsof two or three whole-tones (W).  There are seven ways to choose a starting point in sucha progression.  Each such way is called a mode. The most common ones are the aforementioned major and minor modes,  also calledIonian and Aeolian.  Here's the complete list:

The Seven Diatonic Modes,  Ordered fromBrightest to Darkest :
 Mode NameInterval structure:  7  Steps8  White Notes
Lydian2221221WWWHWWHFGABCDEF
Ionian  (major)2212221WWHWWWHCDEFGABC
Mixolydian2212212WWHWWHWGABCDEFG
Dorian2122212WHWWWHWDEFGABCD
Aeolian  (natural minor)2122122WHWWHWWABCDEFGA
Phrygian1222122HWWWHWWEFGABCDE
Locrian1221222HWWHWWWBCDEFGAB

105 names for the  84  diatonic scales: 7  modes in 12 keys  (15 allowed names).
(Foreach mode,  the tonic  can be one of the  12  choices in column "1".)
1IV:   Lydian7 
1I:   Ionian  (= Major)7 
1V:   Mixolydian7 
1II:   Dorian7 
1VI:   Aeolian  (= Minor)7 
1III:   Phrygian7 
1VII:   Locrian7 
F G ABb C D EF G ABb C D E
CDEFGABCDEFGAB
GABCDEF#GABCDEF#
DEF#GABC#DEF#GABC#
ABC#DEF#G#ABC#DEF#G#
EF#G#ABC#D#EF#G#ABC#D#
B
Cb
C#
Db
D#
Eb
E
Fb
F#
Gb
G#
Ab
A#
Bb
B
Cb
C#
Db
D#
Eb
E
Fb
F#
Gb
G#
Ab
A#
Bb
F#
Gb
G#
Ab
A#
Bb
B
Cb
C#
Db
D#
Eb
E#
F
F#
Gb
G#
Ab
A#
Bb
B
Cb
C#
Db
D#
Eb
E#
F
C#
Db
D#
Eb
E#
F
F#
Gb
G#
Ab
A#
Bb
B#
C
C#
Db
D#
Eb
E#
F
F#
Gb
G#
Ab
A#
Bb
B#
C
AbBbCDbEbFGAbBbCDbEbFG
EbFGAbBbCDEbFGAbBbCD
BbCDEbFGABbCDEbFGA
MmmMMmmoMmmMMmmo
1st2nd3rd4th5th6th7th <<< mode of the major scale.

Two scales which share the same diatonic mode are said to be modes of each other. For example,  F-Lydian is the 4-th mode of C-major  (i.e., C-Ionian)  becauseits tonic (F) is the 4-th note in the C-major scale.  Likewise, G-Mixolydian is the fifth mode of C-major or the second mode of F-Lydian. In modern practice,  this type of reference is most commonly used with respect to therelevant major scale only, as indicated in the last line of the above table.

Dorian  is the only palindromic mode  (2122212). In all other cases,  a mirror mode is obtained by inversion:

  • Mixolydian (2212212) and Aeolian (2122122).
  • Ionian (2212221) and Phrygian (1222122).
  • Lydian (2221221) and Locrian (1221222).  Brightest and darkest.

For each of those mirror modal pairs,  the ascending version of oneis the same as the descending version of the other.

Mixed Modes andPolymodal chromaticism :

Béla Bartók (1881-1945)remarked that all 12 chromatic tones are obtained by mixing some pairs of diatonic modes on the same tonic  (e.g., C-Lydian with C-Phrygian). More generally, the above table cab be used to count how many tones areobtained when mixing two diatonic modes on the same tonic.

Number of tones obtained by mixing two modes
 IVIVIIVIIIIVII
FLydianIV  7  8910111212
CIonianI8  7  89101112
  G    Mixolydian  V98  7  891011
DDorianII1098  7  8910
AAeolianVI111098  7  89
EPhrygianIII12111098  7  8
BLocrianVII1212111098  7  

Among many other things,  this provides a name for a half-dozen special octatonic scales, which are actually the first 6 modes of the Bebop (dominant) scale:

  • Lydian-Ionian   adds Bb to F-Lydian or F# to C-Ionian.
    Mode IV of the Bebop scale
  • Ionian-Mixolydian   adds Bb to C-Ionian or F# to G-Mixolydian.
    Mode I of the Bebop scale.
  • Mixolydian-Dorian   adds Bb to G-Mixolydian or F# to D-dorian.
    Mode V of the Bebop scale
  • Dorian-Aeolian   adds Bb to D-dorian or F# to A-Aeolian.
    Mode II of the Bebop scale.
  • Aeolian-Phrygian   adds Bb to A-Aeolian or F# to E-Phrygian.
    Mode VI of the Bebop scale.
  • Phrygian-Locrian   adds Bb to E-Phrygian or F# to B-Locrian.
    Mode III of the Bebop scale.


(2020-07-20)  
A systematic nomenclature to define precisely lesser-known modes.

The diatonic scale  (especially its Major and Minor modes) is the backdrop for almost all classical music and a good chunk of modern tunes,although 6 of the common diatonic modes are now in common use (locrian  is left out).

Only four heptatonic scales in the Western chromatic system can be expressed canonically  in all 12 keys,  by naming all seven notes  (letters) once and only once,  with at most one sharp or one flat each.  Namely:

This property,  which is taken for granted by most casual students of Western music, is indeed a rare one.  It fails whenever the scale includes two consecutivehalf-steps  (:  For every mode, there's a key whereA and G are included with the tone between them, which can be called neitherA# nor Gb without repeating a letter). There are only two other heptatonic scales for which thisdoesn't happen  (Hungarian major andRomanian major)  but they both fail in two keys, for less obvious reasons.

This fact is lost on most composers and almost all practicing musicians, withlittle or no consequences:  Transposing a piece in writing for all possible keysis rarely required, if ever.

So, there's little or no obstacle to experimentation with a huge number  of exotic scales. The most popular ones eventually get a colorful name. For others, the standard practice is to use a known name (preferably one of the diatonic modes and indicate what modification(s), sharp of flat, is to be applied to whatdegree(s).

Some are queasy about using degree 1 in this scheme. I beg to differ but accomodate those concerns by putting such namesinside square brackets.

  • [ Mixolydian #1 ]   =   Ultralocrian.
  • [ Mixolydian b1 ]   =   Mode V of Major b5.
  • [ Locrian b4 ]   =   Super-Locrian.
  • [ Aeolian b1 ]   =   Lydian Augmented #2.

William Zeitler (1954-)has taken the radical creative step of assigning separate greek-sounding names to all possible modes.The words he coined remain unused,  except as welcome identifiers for some obscure entries of the comprehensive electronic catalog  put together by Ian Ring.

The systematic exploration of non-diatonic scales and their modes started in 1907with the investigations of synthetic scales by Ferruccio Busoni (1866-1924)  who first considered allscales which could be derived from a diatonic mode by lowering or raising a single degree by one semitone.

Each of the  7  diatonic modes features  5  skipped notes whichcan be included in one of two ways.  Therefore,  70  names can be attributedto new scales this way  (for a total of 77 names)  However, some of those scales may have more than one name  (as is the case for any mode of themelodic minor scale). For example,  the Assyrian scale  (mode IIof the melodic minor scale)  possesses two distinct systematic names: either Dorian b2  or Phrygian #6.  In the key of G,  that's:

G   Ab   Bb   C   D   E   F

As  G-Dorian is   G A Bb C D E F   and  G-Phrygian is   G Ab Bb C D Eb F. Conversely,  some of the 66 different heptatonic scales can't be named at all with just one modificationfrom a diatonic mode.

The scope was later expanded to include all possible scales and their respective modes.

Dominant  means the 3 is major and the 7 is flat.

 Come back later, we're still working on this one...

The whole problem is of greater theoretical interest than of practical worth.
J. Murray Barbour (1929) 


 Gerard Michon (2020-06-26)  
A nice quantification of an elusive concept.

The white numbers which appear in the rightmost column of our modal chartsfor heptatonic chromatic scales (including the seven diatonic modesfrom the previous section)  are a numerical evaluation of brightness  computed as follows:

For each of the seven notes allowed in a given mode, we count the number of disallowed  chromatic tonesbetween the root and itself.  Adding all those counts givea sum of seven integers  (always starting with 0 for the root itself) totaling between 0 and 30  (those extremes are reached for twomodes of the pathological scale where consecutives notes are separatedby either one semitone or seven).

For example, the Lydian mode of the major scale has a brightness of18 (namely 0+1+2+3+3+4+5) whereas the brigthness of the major scaleitself (or rather Ionian,  its first mode) is only 17 = 0+1+2+2+3+4+5.

This evaluation can be proved to be correct for diatonic scalesthrough the miracle of the circle of fifths which shows that the above count actually measures precisely set inclusion... In other words, changing diatonic modes with a fixed rootwill never raise some notes and lower others. It does one or the other, for all individual notes in all pieces of musicever written without individual accidentals.

That wonderful fact isn't true for the modes of non-diatonicscales analysed below. Yet, we may keep the above measure as a standard indicationof the otherwise elusive concept of brightness,  under the debatablesimplification that brightness only depends on the difference betweenthe number of notes raised and the number of notes lowered.

We may boldly use that number to compare thebrightness of different modes of the same scale.  Any scale.

The brightness of an n-tonic scale goes from 0 to (n-1)(12-n).  That is:

  • 0 for the monotonic scale.
  • 0 to 10 for a ditonic scale,
  • 0 to 18 for a tritonic scale.
  • 0 to 24 for a tetratonic scale.
  • 0 to 28 for a pentatonic scale.
  • 0 to 30 for an hexatonic scale.
  • 0 to 30 for an heptatonic scale.
  • 0 to 28 for an octatonic scale.
  • 0 to 24 for an enneatonic scale.
  • 0 to 18 for a decatonic scale.
  • 0 to 10 for an hendecatonic scale.
  • 0 for the dodecatonic scale.

The brightnesses of two inverse n-tonic modes add up to  (n-1)(12-n).

Linear Brightness is Tonal.  Quadratic Clarity is Atonal.

The perceived brightness of a rooted scale isprobably a clever balance between the two. For the classification of modes within a scale, I am only retaining the linear score described abovewhich is easy to compute and meets expectationsin the only case everybody agrees on  (diatonic modes).

Barely more complicated would be the introduction ofthe variance (or its square root, thedeviation). Any mode could be represented as a point in the plane with linear brightnessas the x-coordinate and quadratic brightness as the y-coordinate. Experts should then be asked to draw an arrow fromone point the another whenever the former is clearly brighter than the latter.

To my knowledge,  this has never been done. A sensible formula might emerge this way. A priori,  I'd guess thatsubjective brightness is an increasing functionof both  the (linear) mean and (quadratic) deviation.

We may use a linear appoximation to the ideal function so described:

f (x,y)   =  a x  + b y          where    a ≥ 0     and    b ≥ 0

The Garklein Theorem :

Two modes of an heptatonic scale have different  linear brightness scores.


(2020-06-22)  
Modes of the melodic minor scale.  Modes of the harmonic minor scale.

The natural minor scale  is diatonic. As such,  it's just another mode of the major scale (namely, the 6th mode of the major scale, also called Aeolian). Therefore,  all modes of the natural minor scale would also bemodes of the major scale and they are not considered separately.

However,  neither the harmonic minor scale, nor the melodic minor scale  are diatonic and they arenot modes of each other either.  Therefore, both give rise to a full set of 7 distinct modes in 12 possible keys. We may tabulate them as we did the more common diatonic modes (i.e, the modes of the major scale).

2 1 2 2 2 2 1 :  Melodic Minor Scale
All  7  modes ranked bybrightness, in 12 keys  (tonic in mode's column "1")
1III:   Lydian augmented7 
1IV:   Lydian dominant7 
1I:   Jazz minor scale7 
1V:   Hindu scale7 
1II:   Phrygidorian, Assyrian 
1VI:   Half diminished7 
1VII:   Altered dominant7 
F GAb Bb C D EF GAb Bb C D E
CDEbFGABCDEbFGAB
GABbCDEF#GABbCDEF#
DEFGABC#DEFGABC#
ABCDEF#G#ABCDEF#G#
EF#GABC#D#EF#GABC#D#
BC#DEF#G#A#BC#DEF#G#A#
F#G#ABC#D#E#F#G#ABC#D#E#
C#
Db
D#
Eb
E
Fb
F#
Gb
G#
Ab
A#
Bb
B#
C
C#
Db
D#
Eb
E
Fb
F#
Gb
G#
Ab
A#
Bb
B#
C
AbBbCbDbEbFGAbBbCbDbEbFG
EbFGbAbBbCDEbFGbAbBbCD
BbCDbEbFGABbCDbEbFGA
mmM+MMmomommM+MMmomo
1st2nd3rd4th5th6th7th <<< mode of melodic minor.

The 7 modes of the melodic minor scale are known under various names:

  1. Dorian #7.  Ionian b3.  (Ascending) melodic minor scale. Jazz minor
  2. Phrygian #6.  Dorian b2.  Dorian b9.  Phrygidorian. Assyrian.
  3. Lydian #5.  [ Phrygian b1.] Lydian augmented.
  4. Mixolydian #4.  Lydian b7.  Lydomixian.  Lydian dominant.  Super Lydian. Acoustic scale.  Overtone scale. Bartók scale. Simpsons ScalePrometheus heptatonicVachaspati  (64thmela).
  5. Aeolian #3.  Mixolydian b6. Aeolian dominant. Hindu scale.  Mixaeolian.   Melodic Major. Major-Minor.
  6. Locrian #2.  Aeolian b5.  Minor b5. Semilocrian.  Minor Locrian. Half diminished. Aeolocrian.  Altered diminished.  Overtone Inverse.
  7. [ Ionian #1.]  Locrian b4. Altered dominant scale.  Super Locrian.

The Hindu scale  is palindromic.  The other six modescome in three mirror pairs consisting of a bright mode and a dark mode,  increasingly different:

  • Jazz minor scale  and phrygidorian.
  • Acoustic scale  and aeolocrian.
  • Lydian augmented  (brightest)  and altered scale  (darkest mode).

With an extra chromatic passing tone between the 5th and 6th degrees , mode  I  becomes an octatonic  scale known as Bebop melodic minor.

The other proper Bebop scales  are all modes of two other scales, unrelated to the melodic minor scale. Nevertheless,  we may consider Bebop modes obtained from the other heptatonic modes listed aboveby allowing a passing tone at the blue-shaded position . Only mode  I  is widely accepted:

  1. Bebop Melodic Minor.
  2. Half-diminished Bebop.

Harmonic Minor Scale :

In the description of scales,  the term harmonic indicates the presence of at least one step consisting of an augmented second (3 semitones).  Such a step is best abbreviated "A" in the alphabetical version ofinterval structures  (where H is a half-step of 1 semitoneand W is a whole-step of 2 semitones. The scientific name  for that is sesquitone, but the abbreviation "S" is unused.

The double-harmonic major scale  has two of those. The modes of the harmonic minor scale  only have one.

Dominant  means the 3 is major and the 7 is flat.

2 1 2 2 1 3 1 :  Harmonic Minor Scale
All  7  modes ranked bybrightness, in 12 keys  (tonic in mode's column "1")
1VI:   Lydian #97 
1III:   Ionian Augmented7 
1IV:   Romanian Minor7 
1I:   Harmonic minor7 
1V:   Phrygian Dominant7 
1II:   Locrian #67 
1VII:   Ultralocrian7 
F GAb Bb CDb  EF GAb Bb CDb  E
CDEbFGAbBCDEbFGAbB
GABbCDEbF#GABbCDEbF#
DEFGABbC#DEFGABbC#
ABCDEFG#ABCDEFG#
EF#GABCD#EF#GABCD#
BC#DEF#GA#BC#DEF#GA#
F#G#ABC#DE#F#G#ABC#DE#
C#D#EF#G#AB#C#D#EF#G#AB#
AbBbCbDbEbFbGAbBbCbDbEbFbG
EbFGbAbBbCbDEbFGbAbBbCbD
BbCDbEbFGbABbCDbEbFGbA
mmoM+mMMmommoM+mMMmo
1st2nd3rd4th5th6th7th <<< mode of the harmonic minor scale.

The 7 modes of the harmonic minor scale are known under these names:

  1. Aeolian #7.  Minor #7.  Harmonic Minor.
  2. Locrian #6. 
  3. Ionian #5.  Ionian augmented.
  4. Dorian #4 (or #11). Ukrainian Dorian.  Romanian Minor.  Souzinak.
  5. Phrygian #3.  Phrygian Major. Phrygian dominant. Hijaz.  Jewish.  Spanish.  Dorico Flamenco.
  6. Lydian #2 (or #9).
  7. [ Mixolydian #1.]  Ultralocrian.

The harmonic minor scale has no axis of symmetry. The mirror inverses of its modes are modes of the harmonic major scale,  described next...


(2020-06-27)  
The mirror inverse of the harmonic minor scale.

This is arguably either the most exotic of the normative heptatonic Western scalesor the least exotic of the exceptional ones.  It was introduced in 1853 by Moritz Hauptmann (1792-1868).

The current name of the scale was popularized by Nikolai Rimsky-Korsakov (1844-1908) in his Practical Manual of Harmony  (1885).

2 2 1 2 1 3 1 :  Harmonic Major Scale
All  7  modes ranked bybrightness, in 12 keys  (tonic in mode's column "1")
1VI :  Lydian Augmented #2 
1IV :  Lydian diminished7 
1I:  Harmonic major7 
1V :  Mixolydian b27 
1II :  Blues heptatonic7 
1III :  Phrygian b47 
1VII :  Locrian b77 
F G ABb CDb  EF G ABb CDb  E
CDEFGAbBCDEFGAbB
GABCDEbF#GABCDEbF#
DEF#GABbC#DEF#GABbC#
ABC#DEFG#ABC#DEFG#
EF#G#ABCD#EF#G#ABCD#
BC#D#EF#GA#BC#D#EF#GA#
F#G#A#BC#DE#F#G#A#BC#DE#
C#D#E#F#G#AB#C#D#E#F#G#AB#
AbBbCDbEbFbGAbBbCDbEbFbG
EbFGAbBbCbDEbFGAbBbCbD
BbCbDEbFGbABbCbDEbFGbA
1st2nd3rd4th5th6th7th  ...mode of the harmonic major scale.

The 7 modes of the harmonic major scale are called:

  1. Ionian b6.  Major b6. Harmonic Major.
  2. Dorian b5.  Blues heptatonic.  Kartzihiar. [1645]
  3. Phrygian b4.
  4. Lydian b3.  Lydian diminished.
  5. Mixolydian b2.  Harmonic Minor Inversed.
  6. [ Aeolian b1.]  Lydian Augmented #2.
  7. Locrian b7.


(2020-08-13)  
They can't be given signatures in all 12 keys without double alterations.

The four heptatonic scales given so far (diatonic, melodic minor, harmonic minor and harmonic major) are the only ones for which a simple  key signaturecan be given in all 12 keys  (without using double alterations or worse).

Seasoned musicians may be unfazed by this fact (which we prove elsewhere) but this is a good pretext to transfer the discussion of other heptatonic scales to a dedicated page,  where you'll also findan exhaustive discussion of Bebop scales, which have heptatonic and octatonic aspects (the eighth note is just a passing tone but they are usefully classified as modes of just threeoctatonic scales).

The following articles have been transferred.


(2018-04-13)  
Six notes per octave.

The single mode of the whole-tone scale (brightness 15):

The whole-tone scale is the only anhemitonic hexatonic scale.

The keys of  E# =F, G, A, B=Cb, C# =Db and D# =Eb  are modes of F. Likewise,  F# =Gb, A# =Bb, B# =C, D, E=Fb and D# =Eb  are modes of C. Both sets are equimodal,  so the whole-tone scale  has only one mode.

The 10 key signatures of  Whole-tone :
5 key signatures for the class of  F
E#
F
F
F
F
F#
 
 
 
 
G
G
G
G
G
   A
A
A
A
A
 
 
 
 
Bb
B
B
B
B
Cb
 
 
 
C
 
C#
C#
C#
Db
Db
     
 
D
 
 
D#
D#
Eb
Eb
Eb
     
E
 
 
 
E#
F
F
F
F
F#
 
 
 
 
5 key signatures for the class of  C
 
 
 
 
F
F#
F#
F#
F#
Gb
     
 
 
G
 
G#
G#
G#
Ab
Ab
     
 
A
 
 
A#
A#
Bb
Bb
Bb
 
B
 
 
 
B#
C
C
C
C
C#
 
 
 
 
D
D
D
D
D
 
 
 
 
 
E
E
E
E
E
 
 
 
 
F
F#
F#
F#
F#
Gb

Adding a seventh note to the whole-tone scale always yields one of the modes ofNeapolitan Major.

 Come back later, we're still working on this one...

The two modes of the augmented scale :

For either mode  (I or II, corresponding to the column of tonics indicated on the bottom line) you always have a choice of two differents linesomitting a different letter  (shown on a grey background) whose line on the staff  will remain empty. The two choices are transcribed with totally different key signatures but the six tones actually played are the same in the end.

Here are the two enharmonic results for the key of  C:

C D# E G Ab B C   or   C Eb Fb G Ab B   for mode I. 
C Db E F G# A   only   for mode II.  (Unless you want to use B#.)

Both choices of key signatures yield the same tones and brightness.
1I:   Augmented Scale6
 1II:   Inverted Augmented6
F
F
  G#
G#
A
A
  
B
B#
C
C#
Db
D
 
 E
E
F
F
  G#
G#
A
A
  
B
C
C
  
D
D#
Eb
E
Fb
F
 
 G
G
Ab
Ab
  B
B
C
C
  
D
D#
Eb
E
Fb
F
 
 
G
G
  
A
A#
Bb
B
Cb
C
 
 D
D
Eb
Eb
  F#
F#
G
G
  
A
A#
Bb
B
Cb
C
 
 
D
D
  
E
E#
F
F#
Gb
G
 
 A
A
Bb
Bb
  C#
C#
D
D
  
E
E#
F
F#
Gb
G
 
 
A
A
  
B
B#
C
C#
Db
D
 
 E
E
F
F
  G#
G#
A
A
  
B
B#
C
C#
Db
D
 
 
E
Fb
F
 
 G
G
Ab
Ab
  B
B
C
C
  
D
D#
Eb
E
Fb
F
 
 G
G
Ab
Ab
  
B
Cb
C
 
 D
D
Eb
Eb
  F#
F#
G
G
  
A
A#
Bb
B
Cb
C
 
 D
D
Eb
Eb
  
F#
Gb
G
 
 A
A
Bb
Bb
  C#
C#
D
D
  
E
E#
F
F#
Gb
G
 
 A
A
Bb
Bb
  
C#
Db
D
 
 E
E
F
F
  G#
G#
A
A
  
B
B#
C
C#
Db
D
 
 E
E
F
F
  
Ab
Ab
  B
B
C
C
  
D
D#
Eb
E
Fb
F
 
 G
G
Ab
Ab
  B
B
C
C
  
D
Eb
Eb
  F#
F#
G
G
  
A
A#
Bb
B
Cb
C
 
 D
D
Eb
Eb
  F#
F#
G
G
  
A
Bb
Bb
  C#
C#
D
D
  
E
E#
F
F#
Gb
G
 
 A
A
Bb
Bb
  C#
C#
D
D
  
E
I  II <<<  mode of the augmented scale.

 Come back later, we're still working on this one...


(2018-04-19)  
Two scales:  Whole-half diminished scale and Half-whole diminished.

Octatonic symmetrical scale,  where the 8 notes are obtained by repeating four times the sametwo-note progression spanning three semitones  (either semitone-tone  or tone-semitone).  four times. That gives two modes:

  • HWHWHWHW   Half-whole diminished.  Also called dominant.
  • WHWHWHWH   Whole-half diminished.

There are only three distinct keys:

  • C  =  Eb  =  Gb  =  A
  • B  =  D  =  F  =  Ab
  • Bb  =  Db  =  E  =  G

No avoid notes.  All the chords are interchangeable...

 Come back later, we're still working on this one...


(2017-04-09)  
The way simultaneous sets of notes are organized in Western music.

The tightest chords are triads  consisting of three distinct notes, characterized be by the two intervals which separate the rootfrom the other two notes.  The first of those is a third; either a major third (M3; worth 3 semitones) or a minor third (m3; worth 2 semitones). The second one can be a perfect fifth (P5; worth 7 semitones), a diminished fifth (d5;worth6 semitones) or an augmented fifth (A5; worth 8 semitones). That yields four different qualities  of triads:

The four different qualities of triads (in closed position)
ValidityQualityInterval 1Interval 2Interval Structure
ConsonantMajorM3P51  3 5
Minorm3P5135
DissonantAugmentedM3A5135
Diminishedm3d5135
InvalidM3d5135
m3A5135

A triad can be denoted by the roman numeral corresponding to its root;

  • UPPER-case for a major triad.
  • Lower-case for a minor triad.
  • UPPER-case with a "+" superscript for an augmented triad.
  • Lower-case with a "o" superscript for a diminished triad.

The seventh chords  are four-note chords  (tetrads)  derived from the above triads.

Spread Triads, Chord Inversions and Figured Bass :

The above describes the most basic form of a triad, called close-position,root-position.  Other versions of the same chord are obtainedby a so-called  inversion  which consists in displacingone of the three notes by a full octave.

 Come back later, we're still working on this one...

Secondary Chords :

 Come back later, we're still working on this one...


(2020-08-17)  

 Come back later, we're still working on this one...


(2018-02-25)  
Musical punctuation.  Dominant and tonic.

 Come back later, we're still working on this one...


(2021-04-25)  

Modulation is the essential part of the art.  Without it there is little music,
for a piece derives its true beauty not from the large number of fixed modes 
which it embraces but rather from the subtle fabric of its modulation.

 Charles-Henri de Blainville(1767)

 Come back later, we're still working on this one...


(2018-03-20)  
A few basic principles composers have been using.

 Come back later, we're still working on this one...


(2020-08-05)  
Composing a musical piece without human intervention.

 Come back later, we're still working on this one...


(2020-07-23)  
Changing the sound of a tune without affecting its structure.

 Come back later, we're still working on this one...


(2018-02-16)  
Transforming a melody by moving one or more note to a different octave.

 Come back later, we're still working on this one...


(2018-02-12)  
The Lydian Chromatic Concept of Tonal Organization  (LCCTO).

George Russell published the first edition of LCCTO in 1953 (age 30)and spent nearly fifty years refining it. He published the final edition in 2001:

The Lydian Chromatic Concept of Tonal Organization:
The Art and Science of Tonal Gravity
 (George Russell,2001)

 Come back later, we're still working on this one...


(2020-08-08)  

According to Andy Chamberlain,  that's what Jacob Collier  has been promoting using a silly compound prefix. What we'll call here telescoping Lydian  is what Collier dubs super-ultra-hyper-mega-meta Lydian.

The idea hinted at by Collier and articulated by Chamberlain is toconsider the first 7 notes of some heptatonic mode  (e.g., Lydian)  and prolongthat with the notes corresponding to the same mode rooted at the n-th degree, provided the initial seven notes are not affected by the switch. This works with either n=4 or n=5 (not both) for alldiatonic modes.

Telescoping F-Lydian
FGABCDE
CDEFGAB
GABCDEF#
DEF#GABC#
ABC#DEF#G#
EF#G#ABC#D#
B
Cb
C#
Db
D#
Eb
E
Fb
F#
Gb
G#
Ab
A#
Bb
F#
Gb
G#
Ab
A#
Bb
B
Cb
C#
Db
D#
Eb
E#
F
C#
Db
D#
Eb
E#
F
F#
Gb
G#
Ab
A#
Bb
B#
C
AbBbCDbEbFG
EbFGAbBbCD
BbCDEbFGA
FGABCDE

The highlighted last line is identical to the first,  which corresponds tothe repetition of the 48-note pattern  (not 49)  with a period of 7 octaves. By starting the full pattern at the beginning of the relevant line, you obtain telescoping Lydian in any of the twelve possible keys.

Now,  if we impose the additional requirement of a perfect naming of the notes (repeating the letters A,B,C,D,E,F,G in sequence)  the 7-octave pattern can't be repeatedindefinitely  (that would require 49 notes instead of 48).  The maximal perfect patterncontains just  67  tones,  over  9½  octaves:

Telescoping Diatonics
EF#G#ABC#D#
CbDbEbFbGbAbBb
GbAbBbCbDbEbF
DbEbFGbAbBbC
AbBbCDbEbFG
EbFGAbBbCD
BbCDEbFGA
FGABCDE
CDEFGAB
GABCDEF#
DEF#GABC#
ABC#DEF#G#
EF#G#ABC#D#
BC#D#EF#G#A#
F#G#A#BC#D#E#
C#D#E#F#G#A#B#
G#A#B#C#D#E#G

The musical explorations of Jacob Collier (b. 1994)

Jacob Collier is from a musical family and hasperfect pitch. He is an alumnus from the Purcell School for Young Musicians. He dropped out of the Jazz piano class at the Royal Academy of Music (where his mother is a professor). Describing him as an autodidact  is a misleading  term, possibly damaging for young people who are still unsure about the benefits of a formal education. When successful,  education may seem unnecessary a posteriori,  but this ain't so.

Collier has been sharing his creation on YouTube since 2012  (at age 18). He has received accolades from the music industry  (including several Grammys).

 Come back later, we're still working on this one...


(2018-02-15)  
Protocol for transmitting and recording keyboard performances.

A time-stamped MIDI event correspond to depressing a certain key at a certain velocityand for a certain duration.

A 7-bit MIDI note number  n  (between 0 and 127)  corresponds to the following frequency:

f   =   2 (n-69) / 12  ×  440 Hz

This is to say that note  69  is concert-A  (440 Hz; A above middle-C) by definition.  Middle-C is 60.  The lowest note on the piano is number  21 (A,  27.5 Hz).  The highest is  108  (C,  4186.01 Hz). The MIDI numbers span almost  11  octaves, from  C-1  (8.176 Hz) to  G (12543.854 Hz):

The 128  MIDI  note numbers :
 32'16'8'4'2'1'6''3'' 
-1  0 123456789
DoC01224364860728496120
 C#11325374961738597109121
D21426385062748698110122
 D#31527395163758799111123
MiE416284052647688100112124
FaF517294153657789101113125
 F#618304254667890102114126
SolG719314355677991103115127
 G#820324456688092104116 
LaA9334557698193105117
 A#1022344658708294106118
SiB1123354759718395107119

Typically,  very low or very high codes are silenced for different ranges in voices which are intendedto represent actual musical instruments. For example,  with the built-in Grand Piano  of Ableton Live,  no sound corresponds to codesbelow  21  (A0, the lowest key on the piano)  or above  108  (C8,  thehighest key on the piano).  That means silencing most  of the keys in both ofthe extreme octave shiftts provided by some small keyboards  (like the M-AudioKeystation Mini 32).

 Come back later, we're still working on this one...


(2018-02-26)  
Beyond twelve tones per octave and back to the origins of music.

 Come back later, we're still working on this one...


(2020-09-04)  

 Come back later, we're still working on this one...


(2018-02-26)  
Guitars and others.

The standard tuning  for the open tones of a six-string guitar is:

E2  A2  D3  G3  B3  E4  

 Come back later, we're still working on this one...


(2018-02-26)  
Violinviolavioloncello (or cello)  and double-bass (or bass).

The smallest related instruments (violino piccolo &pochette) are all but forgotten.  The standard tuning of the 4 strings in modern instruments is:

  • Violin  (all fifths tuning):  G3,  D4,  A4,  E5.
  • Viola  (tuned in fifths):  C3,  G3,  D4,  A4.
  • Violoncello  (tuned in fifths):  C2,  G2,  D3,  A3.
  • Double Bass  (all fourths tuning) : E1,  A1,  D2,  G2.
    • 5-String Double Bass: B0,  E1,  A1,  D2,  G2    (most often).
    • 6-String Double Bass:  B0,  E1,  A1,  D2,  G2,   C3.

ViolinSizesAdults normally play 7/8 or 4/4  (full size).
Size :1/161/101/81/41/22/47/84/4
Body''89101112½1313½14
cm2336
Total''14½161718½20½2122½23½
cm
Neck to
Wrist
''141516½182021½22≥ 23
cm

Famous violin makers of the past include:

Some makers have achieved a great reputation for specific violin parts:

  • Bridges : Aubert Lutherie, in Mirecourt,  France.


(2020-06-18)  
Sopranino, soprano, alto, tenor, basset, great bass, contrabass, etc.

Sometimes just called flutes  (of which they are now the most common kind) recorders  have been known by that name since 1388,  or earlier.

Many languages which don't use a straight adaptation of the word recorder employ a locution which translates as block flute,  refering to theinternal construction of the mouthpiece,  featuring a solid wooden fipple plug.

Modern recorders come in the sizes listed below from smallest to largest,usually with baroque-english fingering  (as opposed to German fingering). The quoted tuning refers to the lowest note the instrument can produce (always using scientific notation).

The above is mostly the streamlined modern lineup, which allows recorder players to play any instrument by mastering only two fingering systems (C and F).  Historically however, there are traces of a traditional nomenclature where successive members of the recorder familywere uniformly separated by a perfect fifth  (incidentally,  this makes the nominalkey sufficient to identify the octave, with room to spare for an unplayableinstrument  in Eb = D#  at either end of the spectrum). This scheme,  which was probably never really enforced, applies to the three deepest recorders in use.  It drifts from therebut names remain almost recognizable for smaller instruments...

  1. Unused.  Would be way  too small for a real chromatic instrument.
  2. Sopranissimo in Ab = G#6  (four tones above  CGarklein).
  3. Sopranino in Db = C#6  (four tones above F5).
  4. Soprano in Gb = F#5  (three tones above  C5).
  5. Alto in B4  (three tones above  F4).
  6. Tenor in E4  (two tones above  C4). One tone above  Dvoice flute.
  7. Basset in A3  (two tones above  F3).
  8. Greatbass in D3  (one tone above  C3).
  9. Contrabass in G2  (one tone above  F2).
  10. Sub-greatbass in C2.
  11. Contrabass in F1.
  12. Sub-contrabass in Bb0.  (Modern creation by Adriana Breukink.)
  13. Unused.  Would require extreme lung capacity.

In a pinch,  professional recorder players can play one semitone lower than the nominalpitch of their instrument by closing all finger holes (including "hole 0" for the left thumb on the underside)  and partially blocking the end of the pipe "hole 8";that's what the first line of the table below is intended to convey. The other lines indicate how each note of the chromatic scale can  be played (there are often other solutions)  to cover   2¾  octaves.

Garklein
Soprano
Tenor
Great Bass
Sopranino
Alto
Basset
Contrabass
012345678
B012345678-E
C01234567 F
C# / Db01234567- F# / Gb
D0123456  G
D# / Eb0123456-  G# / Ab
E012345   A
F01234 67 A# / Bb
F# / Gb0123 56  B
G0123     C
G# / Ab012 456-  C# / Db
A012      D
A# / Bb01 3 56  D# / Eb
B01       E
C0 2      F
C# / Db 12      F# / Gb
D  2      G
D# / Eb  23456  G# / Ab
E0-12345   A
F0-1234 6  A# / Bb
F# / Gb0-123 5   B
G0-123     C
G# / Ab0-12 4    C# / Db
A0-12      D
A# / Bb0-12  56 (7-) D# / Eb
B0-12 45   E
C0-1  45   F
C# / Db0-1 34 67-8F# / Gb
D0-1 34 67- G
D# / Eb0- 23 ( 5 6 7-) G# / Ab
E0- 23456  A
F0-12 45  8A# / Bb
F# / Gb0-12 45   B
G0-1  4    C

The open fingerings  are defined to be the patterns where the first holesare closed and the last ones are open. They tend to be easier, more reliable and more stable than the other patterns, which are called forked fingerings  (where open and closed holes alternate).

In 1926,  the German instrument maker Peter Harlan (1898-1966) introduced a modified version of the recorder, where the fourth fingerhole is larger than the fifth, in an effort to makethe instrument faster to learn. That modification yields an open fingering for the first F in a C-descant  (so that all simple 1-octave tunesin C-Major can be played with open fingerings only). That so-called German fingering  is still usedin the educational market.  However, only the simplest songsare easier to play on a German instrument and the early habits so acquiredare a hindrance to the use of better recorders,  which all  use Baroque fingering.

border
border
visits since February 12, 2018
 (c) Copyright 2000-2023, Gerard P. Michon, Ph.D.

[8]ページ先頭

©2009-2025 Movatter.jp