Movatterモバイル変換


[0]ホーム

URL:


Modules


  • Modules  are vectorial structures over a ring of scalars  (instead of a field).
  • Free modules  have a basis similar to that of vector spaces.
  • Injective modules.  The rationals form an injective module over the integers.
  • Projective modules.  Due to Eilenberg  & Cartan  (1956).
  • Flat modules.  Devised by Jean-Pierre Serre  in 1956.

Related articles on this site:

 Michon

Related Links (Outside this Site)

Théoriedes opérations linéaires  (Banach spaces)  by Stefan Banach  (1932).
 
border
border

Module Theory


(2006-03-28)  
Avectorial structure where division  by a scalar isn't "well defined".

module  obeys the same basic rules as avector space,but its scalars  are only required toform aring; a nonzero scalar need not have areciprocal...

A module over A  may be called an A-module. For example,  Q   is a  Z -module. This is to say that the rationals form a module over the integers (this particular example gave birth to the concept of an "injective module").


(2020-05-24)  
They have a vector-like basis.  Not all modules do.

Given a ring A  and a set B,  the free A-moduleof basis B  consists ofall  formal  linear combinations of elements of S,  with coefficients  in A.

It's understood that a formal linear combination  is zero only when all its coefficientsare.  So the above definition means that all elements of B  are linearly independent in the module so generated.  Just like in the case of vector spaces, what we call a basis  is a linearly-independent setof generators.  Recall that a linear combination is only allowed to have a finite number of nonzero coefficients. The above free module is denoted:

A(B)

If B  is infinite,  that's much smaller  than the module AB  (consisting of all applications from B  to A,  which can be added and scaled pointwise) which B  is much too small to generate!

A free module over Z (a freeZ-module) is called a free abelian group.


(2020-05-26)  
The rationals form an injective module  over the integers.

 Come back later, we're still working on this one...


(2020-05-24)   (Eilenberg &Cartan, 1956)
A generalization of Free Modules.

 Come back later, we're still working on this one...


(2020-05-24)     (Jean-Pierre Serre, 1956)

 Come back later, we're still working on this one...

border
border
visits since May 26, 2020
 (c) Copyright 2000-2020, Gerard P. Michon, Ph.D.

[8]ページ先頭

©2009-2025 Movatter.jp