Movatterモバイル変換


[0]ホーム

URL:


Groups  and
Symmetries

A symmetry is a change that
doesn't make a difference
.
 border
 border
 border
Sean Carroll (1966-)
 
At the deepest level, all we find are
symmetries and responses tosymmetries
.
StevenWeinberg Dirac Memorial Lecture  (1986)

On this site, see also:


Related Links (Outside this Site)

TheDevelopment of Group Theory  by J.J. O'Connor  and E.F. Robertson.
Structure ofGroups by John A. Beachy (AbstractAlgebra OnLine).
Group Theory and Physics  by James B. Calvert  (2000, 2004).
Atlas of Finite Group Representations

Bibliography :

  • Atlas of Finite Groups   J.H. Conway, R.T. Curtis, S.P. Norton,R.A. Parker  (computational assistance of J.G. Thackray)  (1985).
  • Symmetry and the Monster byMark Ronan.  (2006).

Videos :

Finite Simple Groups Classification (42:37) Peter M. Neumann (LMS, 1992).
The Symmetries of Things (1:12:13) by John Conway  (2012-08).
Finite Groups, Yesterday and Today (54:55) Jean-Pierre Serre  (2015-11-02).
30 years of the Atlas and... before (46:40) John G. Thompson  (2015-11-02).
Abstract group theory (21:57) Grant Sanderson  (3Blue1Brown, 2020-08-19).

 
border
border

Group Theory  101


(2006-02-21)  
In a monoid, the associative  internal operator has a neutral element.

Bourbaki  calls magma a set endowed with some  internal well-defined operation. (Avoid the term groupoid  for this, which is now best reservedfor aconcept in category theory.)

Multiplicative notations  are often used where the binary operator isunderstood between consecutive symbols representing elements. Saying that an operationis multiplicative  merely stresses the use of that convention usually supplemented by the optional use of a so-called multiplicative, symbol,  (like a dot,  an x-shaped cross,  a delta or any special ad hoc  symbol) whenever a clear separation between elements is deemed typographically appropriate.

Once a particular operator is so singled out, it's called a multiplication and the qualifier multiplicative  can then be used,  especially todistinguish that from co-existing additive  concepts.

Semigroups

If its operator is associative,  a magma iscalled a semigroupAssociativity  is the property which makes the use of parentheses optional:

x y z   =   (x y) z   =   x (y z)

The  order  of a finite  semigroup is its number of elements. We count two semigroups as distinct  when there's no isomorphism  between them:

Number of distinct semigroups of order  n.  (A027851)
012345n = 6n = 7n = 8n = 9
1152418819152863416276723684030417105978177936292

A semigroup operator may or may not becommutative. (In a commutative  semigroup,  xy  is the same as  yx for any pair of elements  x  and  y.)

Number of distinct commutative semigroups of order  n.  (A029851)
012345n = 6n = 7n = 8n = 9
11312644053312443702209839623492664

The numbers of distinct noncommutative semigroups are obtained from the above two tables, by termwise subtractions.  Those numbers are always even because suchsemigroups come in pairs linked by an anti-isomorphism.

Number of distinct noncommutative semigroups of order  n.
012345n = 6n = 7n = 8n = 9
0021212415102532215833023681820578105977554443628

Lone operators are often designed to be associative. In complex structures with several operators, non-associativity may emerge in a natural way:

For example, in the realm of hypercomplex numbers,the multiplication of octonions  or sedenions  is not associative.

A × (B × C)   =   (A × B) × C  +  B × (A × C)

Monoids :

semigroup  in which there's a neutral element e is called a monoid :

e ,  x ,   e x   =   xe   =   x

Number of monoids of order  n.  (A058129)
012345n = 6n = 7n = 8n = 9
01273522822373155916689973685886630

Number of commutative monoids of order  n.  (A058132)
012345n = 6n = 7n = 8n = 9
012519845093901489572264764

The number of noncommutative monoids is obtained by subtracting the correspondingentries of the above tables.  It's always an even number because such monoids come in pairs linked by an anti-isomorphism.

Number of noncommutative monoids of order  n.
012345n = 6n = 7n = 8n = 9
00021614417282765816200403683621866

A monoid can also be defined as acategory witha single object  (the arrows of that category being the elements of the monoid).


(2006-03-04)  
Two flavors of invertibility, which coincide when both exist.

In a monoid, an element  x  is said to be right invertible  if there's a right-inverse x'  of  x  (which is to say that the product xx'  is unity). It's called  left invertible if there's a left-inverse  x''  (such that x''x  is unity).

When both inverses exist, they are necessarily equal (:  Consider  x''xx' ).In this case,  x  is said to be invertible and its (unique) inverse is denoted  x-1.

TheGroup  M* of the Invertible Elements of  M :

In a multiplicative monoid  M, the set of all invertible elementsform agroup which is often denoted  M*. (The neutral element of  M  belongs to  M*.)

For example :


(2006-02-21)  
A particular monoid where only  the neutral element is invertible.

All the finite strings (or words) whose characters (letters or symbols)are taken from a given alphabet  forma monoid under the operation of concatenation (concatenating two strings means appending the second to [the right of] the first). The concatenation of two strings called  A  and  B is best called  "Abefore B".

The empty string is the neutral element for concatenation.

This monoid is free  from any relations equating distinct  strings of basic symbols.  Hence the name (French: monoïde libre ).

Clearly, concatenating two nonempty strings yields something other than the emptystring.  The empty string is thus the only string with an inverse...

The free monoid over an alphabet of only one symbol is isomorphic to the natural integersendowed with addition  (0,1,2,3...).  In every other case, a free monoidis clearly not  commutative.


(2013-01-02)    (forpower-associative "multiplications")
Raising something to the power of an integer.

Whenever some kind of associative multiplication is defined,  something like  x3  issimply shorthand for  xxx.  It's always legitimate to raisean element to the power of a positive  integer that way.

x0  is always defined as equal to the neutral element, if there is one  (otherwise, it's undefined). It makes no difference whether  x  is invertible or not  (with ordinary arithmetic,zeroto the power of zero equals one).

If  x  is invertible,  x-3  simply denotes (x-1)3. Only invertible elements can be raised to the power of a negative integer.

Empty sums, empty products, empty intersections, etc.

Raising something to the power of zero is a special case of an empty product. The result of not performing at all some well-defined associative operation dependson that operation alone:  It's equal to its neutral element  (whenever it has one).

  • An empty sum is  0  (the neutral element for addition).
  • An empty product is  1  (the neutral element for multiplication).
  • An emptycategorial product is theterminal element  (if there's one).
  • An empty union of subsets is the empty set.
  • An empty intersection of subsets is the whole set.
  • An empty concatenation of strings  is the empty string.
  • The lowest common multiple  of no positive integers is  1.
  • The greatest common divisor  of no nonnegative integers is  0.
  • Etc.


(2006-02-21)  
A group is a monoid in which every  element is invertible.

Walthervon Dyck (1856-1934) formally defined groups  in 1882:

A group is a set  G  on which an internal operationis defined which verifies the following properties (usingmultiplicative notations for the operator).

  • Closure : xG, yG,  x y  G  (The product is well-defined.)
  • Associativity:  xG, yG, zG,  (x y) z  =  x (y z)
  • unity element  (e)  exists :  eG, xG,  e x  =  xe  =  x
  • Universal Invertibility :  xG, x'G,  x x'  =  x' x  = e

G  is called a commutative group (or abelian  group)  when we also have:

  • Commutativity (optional) :  xG, yG,  x y  =  y x
An additive  group is merely a group (usuallyabelian)  where additive notationsare used:  The plus  sign  (+)  denotes the group operator.

Single-sided group  properties imply double-sided ones :

The double-sidedness of two of the above group axioms  need notbe postulated; it can be derived from one-sided equivalents of thoseaxioms :

  • There's a right-neutral  element e  :   x,   x e  =  x
  • Every element is right-invertible :  x,x',   x x'  = e

Indeed, we may compute   x' x  using just those two single-sided postulates:

x' x  =  x' xe  =  x' x x' (x' )'  =  x'e (x' )'  =  x' (x' )'  =  e

That would show  x'  to be the inverse of  x, if we knew that e  is neutral on both sides.  That fact is easy to prove,  using the above as a lemma:

xG,  e x   =   (x x' ) x   =   x (x' x)   =  xe   =   x


This double-sided neutrality implies that there's only one unity e . (:  Assume another unity e'  andconsider e e' ).

Similarly, there's only one  inverse  x' of  x (:  Let  x"  be anotherand consider x' x x" ). So we may safely talk about the  inverse of x.

Note, finally, that   (x' )' = x  (: x' (x' )' =e ).


(2006-02-21)  
A subgroup is a group contained in another group.

A subgroup H of a group G is a subset H of G which formsa group under the group operation defined over G. H is a subgroup of G if and only if  it contains theproduct of any element of  H  by the inverse  of any other element of  H. Amultiplicativesubgroup is said to be stable by division.

xH, yH,   x y-1 H

When additive  nomenclature and notations are used, this translatesinto the following statement, which says that a subgroup of an additive groupis merely a subset that's stable by subtraction :

xH, yH,   x y H

proper subgroup of G is a subgroup of G not equal to G itself. The  trivial  group  {e}  has no proper subgroup.

Any intersection  of subgroups is a subgroup.

The centralizer  in a group  G of a subset  E  consists of all the elements of  G  whichcommute with every element of  E. It is a subgroup of G.

The centralizer in  G  of  G  itself is thecenter of  G,  denoted  Z(G) (it's the intersection of all centralizers in  G). The center is anormal subgroup of G, butother centralizers may not be. Elements of  Z(G)  are called central.


(2020-01-27)   A
A multiplicatively absorbent subset of A  is an ideal  of A.

By definition:
For a left-ideal I,the product ax  is inI whenever x is:  aA,aI  I
For a right-ideal I,the product  xa  is inI whenever x is:  aA,Ia  I
Unless otherwise specified,an ideal  is both  a right-ideal and a left-ideal. Note that the empty set is an ideal of any semigroup.

Any intersection of [one-sided] ideals is a [one-sided] ideal. The intersection of all the ideals of a semigroup is called its minimal  ideal. If it's nonempty,  the minimal ideal  M  of a commutative  semigroup is a group. This is to say that  M  has a neutral element, even if the whole semigroup doesn't.

 Come back later, we're still working on this one...


(2006-03-09)  
The smallest subgroup  containing  E is said to be generated  by  E.

For any subset  E  of a group  G,  the intersectionof all subgroups  of  G containing  E  is a subgroup of  G, called the subgroup generated  by  E.

E  is said to be a set of generators  of whatever subgroup it generates. A group which is generated by a finite set is said to be finitely generated.

For example, the additive  group (Z,+)  of the integers is generated by the set {1}. It's also generated by {2,3} or any other pair of coprime integers  (because of Bezout's lemma). More generally,  (Z,+) is generated by any set of coprime integers (not necessarily pairwise  coprime)  like  {6,10,15}.

finite  group (oforder  n )  which is generated by a singleelement is a cyclic  group. An element of such a group which generates the whole groupis called a primitive  element (or aprimitive root,  with the vocabulary inherited from representingthe cyclic group of order  n  asthe "n-th roots of unity" in complex numbers). There are  (n)  different elementsin a cyclic group which are primitive ones (   being Euler'stotient function).

Themultiplicative group (Q+,) of positive rationals is not  finitely generated. It's generated by the prime numbers {2,3,5,7,11,13,17,19...}.

Additive  groups which are not  finitely generatedinclude the rationals,  the reals,  the complexnumbers,  the p-adic integers, thep-adic numbers,  etc.


(2016-05-29)  
Describing a group using the relations obeyed by its generators.

A finitely-generated group can be described by naming a set ofgenerators andstating the nontrivial relations they obey  (the relators). Those relators are normally given by expressions which are equalto the neutral element  (minimally so) but explicit equations are also commonly used.

free group  has no relators. The simplest free group is isomorphic to the additive group of the integers (Z,+)  and has thefollowing multiplicative presentation,  which names a single generatorand states no relators:

<a | >

Less trivially,  the octic group D4 could be presented  as follows:

r,s  | r 4,s 2,srsr  >        or        < r,s  | r 4 =s 2 =srsr = 1  >

Do not confuse such presentations  with (linear) representations.


 Joseph-Louis Lagrange  (1736-1813)(2006-03-02)  
The order of a subgroup divides the order of the group.

By definition, the  order  |G|  of a finite group  G is its number of elements. (The order of an element x is the order of the subgroupgenerated by {x}.)

Cosets :

In a group  G, the left-coset  of an element  x,  with respect tothe subgroup  H, is the subset  x H  of  G (consisting of all products  x h   where  h  is an element of  H). Similarly, the right-coset  is  H x.

Index of a Subgroup :

Twoleft-cosets with respect to Hare either disjoint or identical and they havethe same cardinality  as H (i.e., the same number of elements if  finite). Whenever it's finite,the number of left-cosets with respect to H is equal to the number ofright-cosets. It's denoted  [G:H]  and is called the index  of H  in  G.

Lagrange's Theorem :

In the case of a finite  group  G, the fact that such left-cosets form a partition  of  G shows that the order of the subgroup  H  divides evenlythe order of  G.

This result is known as Lagrange's Theorem. It's now presented as one of the most basic results of Group Theory, named in honor of Joseph-LouisLagrange (1736-1813),who made a related remark in 1777. The general result was probably known to Cauchy (1789-1857) but it was only formally proved in 1861, by Camille Jordan (1838-1922; X1855).

Commensurability :

Two subgroups are said to becommensurable when theindex of theirintersection is finite in each of them. The qualifier is inherited from ancient Greek mathematics,where two real numbers are calledcommensurable when they are proportional totwo integers.  The two additive groupsgeneratedby two such numbers are indeedcommensurable in the above sense(their intersection is the additive group generated by the lowest common multiple of the two numbers).


(2020-05-19)  , 1845)
If aprime number  p  divides |G|, then some element of G has order  p.

The commutative case can be used as a lemma to prove Cauchy's theoremand also its generalization by Sylow  (Sylow's first theorem, 1872).

:  Cauchy's group theorem  holds forabelian groups.

Proof :  Let G be an abelian group G whose order is a multiple of the prime p:  |G| = n = m×p. First,  we see that the proposition is true if G iscyclic, generated by element a  (since the element am  is then of order p).

Otherwise, we proceed by induction  on  m, starting with the case  m = 1  which makes p the order of G. This is trivial because,  by Lagrange's theorem, the order of an element must divide the order of the group and canthus only be 1 or p.  In other words, any element of G besides identity is a satisfactoryelement of order p  (which establishes also that G is cyclic).

For  m ≥ 2,  consider an element h  of G, besides identity. Let H be the nontrivial subgroup generated  by h. H is anormal subgroup  (as is any subgroup in the abelian case). Both H and G/H are nontrivial group of order strictly less than n (because we've already disposed of the cases where G is cyclic). Since the product of their orders (respectively |G| and [G:H]) equals n = m×p,  at least one of them is divisible by p. In either case,  the induction hypothesis implies that the corresponding groupcontains an element of order p.  Either way, we can use that to obtainan element of order p in G, as follows:

  • If H contains an element x of order p,  then x is also in G and we're done.
     
  • If G/H contains an element y of order p,  then y is the class xH of someelement x of G.  For any integer k, the class of xk is yk. So, the order of x is the same as the order of y, namely p. QED

This concludes the proof that Cauchy's theorem holds for abelian groups.

Proof for non-abelian groups :

 Come back later, we're still working on this one...


(2020-05-19)  
On the number of subgroups of given order in a finite group  G, 

For a prime  p, a p-group  is a group where theorderof any element is a power of  p. If it's a subgroup  of G, it's called a p-subgroup  of G.

In a finite group  G,  a Sylow p-subgroup  (abbreviated p-SSG)  is a maximal  p-subgroup of G. The set of all p-SSG is denoted  Syl(G). Remarkably, all of those are isomorphic to each other.

Sylow's First Theorem :

 Come back later, we're still working on this one...

Sylow's Second Theorem :

 Come back later, we're still working on this one...

Sylow's Third Theorem :

 Come back later, we're still working on this one...


(2006-03-02)  
The left and rightcosets withrespect to anormal subgroup are identical.

The concept of a normal subgroup  is due to Evariste Galois  (1832).

Asubgroup  H is normal  when aH = Ha  for anya. Such a subgroup is also called invariant or distinguished (French: sous-groupe distingué ).

A subgroup  H  is normal iff  it's stableunder any inner isomorphism.

aG,xH,  a xa-1 H

Quotient Group of a Normal  Subgroup :

To a normal  subgroup H  corresponds an equivalence relation  amongelements of  G  defined by calling x and y equivalent when xy-1  is in  H  (in other words,when x and y have the same left cosets with respect to H).

The equivalence classes  so definedform a group denoted  G/H  andcalled the  quotient of  H  in  G (or of  G  by  H)  also dubbed  "G modulo H".

Although the above equivalence relation  is defined for anysubgroup  H,  the equivalence classes form a group only  when  H  is normal.

Examples of Normal Subgroups :

Any group  G  is a normal subgroup  of itself (the only non-proper  one).

The trivial group  {e}  is a normal subgroup  ofany group  G  whose neutral element is  e. (It's a proper subgroup of any such  G but itself.)

The derived subgroup  G'  is alsoalways anormal subgroup of  G.

The center  Z(G)  of a group  G  consists of all the elementswhich commute with every  element  G. A member of  Z(G)  is called a central element. A  noncentral  element is an element whichdoesn't commute with at least one other element. The center  is anormal subgroup. So is any subgroup of the center (in particular, any subgroup of an abelian group is normal).

If f  is ahomomorphismor anantihomomorphismfrom group  G,  then thekernelof f  (ker f ) is a normal subgroup of  G. More generally,so is the inverse image  (pre-image) of any normal subgroup of f (G). For a normal subgroup  H  of  G, the direct image f (H) is a normal subgroup of f (G).

For any subset E of the group G, the  subgroupgenerated byall theconjugates of the elements of  E is called conjugate closure  of E. It's anormal subgroup containing E. In fact, it's the smallest normal subgroup containing E  (i.e, it's the intersectionof all normal subgroups containing E).  It's thus alsoknown as the normal closure  of E.

Any Subgroup is a Normal Subgroup of its Normalizer :

The normalizer  of a subgroup  H consists of all elements  x  of the group  G for which  x H = H x (in particular all elements of  H belong to its normalizer).  The normalizer of  H is asubgroup of  G. By definition,  H  is a normal subgroup of its normalizer (H  need not be a normal subgroup  of the whole group G).


(2019-04-13)  
Notations for  [proper] normal subgroups  (or ideals).

Two conventions are floating around to distinguish between a standard (reflexive) ordering relation  and its strict  (antireflexive) counterpart:

The highlighted  entries may be ambiguous. I don't recommend the grey  ones.
 New StyleOld Style
A  is a subset of BA  ⊆  BB  ⊇  AA  ⊂  BB  ⊃  A
A  is aproper subset of BA  ⊂  BB  ⊃  AA  ⊂⊂  BB  ⊃⊃  A
A  ⊊  BB  ⊋  A
A  is a normal subgroup of BA  ⊴  BB  ⊵  AA  ⊲  BB  ⊳  A
A  is aproper normal subgroup of BA  ⊲  BB  ⊳  AA  ⊲⊲  BB  ⊳⊳  A

The above notations for normal subgroups  were introduced by Helmut Wielandt  around 1960. They are now also used to denote ideals  in ring theory (since an ideal is to a ring what a normal subgroup is to a group).


(2006-04-05)  
Functions for which the image of a product is a product of the images.

An homomorphism  is a map (orfunction) which preserves some specific algebraic operation(s). A  group homomorphism  is thus a map f from a [multiplicative]group  G  into another group  H,  which is such that:

xG, yG,    f(x y)  = f (x)f (y)

If f  issurjective ("onto" H)  it's called an epihomomorphism (or "homomorphism onto"). If it'sinjective ("one-to-one")  it's called an monomorphism.If it'sbijective ("one-to-one onto")  it's an isomorphism.

An homomorphism from G  to itself is called an endomorphism  of G. A bijective endomorphism is called an automorphism.

The automorphisms of a group  G  form a group, denoted  Aut(G).

Anti-homomorphisms :

An anti-homomorphism,  with respect to amultiplicative operator, is a function f which reverses the order of that multiplication :

xG, yG,    f (x y)  = f (y)f (x)

In any group, inversion  is an example of an anti-homomorphism:

( x y ) -1   =   y -1  x -1

The concepts defined above for homomorphisms have their counterparts for anti-homomorphisms: Anti-epihomomorphismanti-monomomorphismanti-isomorphismanti-endomorphism  and anti-automorphism.

Kernel   (French: noyau )

For a homomorphism  (or an anti-homomorphism) f  fromgroup  G  to a group of identity  e, the kernel  of f  is a normal subgroup of  G  defined by

ker f   =  { xG  | f (x) = e }

(The homomorphicpre-imageof any  normal subgroup is normal.)


(2006-03-05)    (Gersonides, 1321)
The group of thepermutations of  E (bijections of the set E onto itself).

permutation  of  E  is a one-to-one correspondence(bijection) of  E  onto itself. The term is most commonly used when  E  is finite,but it's also acceptable when  E  is infinite (possiblyuncountably so).

The permutations of  E  are a group under function composition  ().

fg (x)  =  f (g (x) )

In the finite case, the symmetric group of degree n is denoted Sn. Its order is the number of permutations of  n  elements,namely  n!  ("nfactorial").

Log g(n)     (n Log n)½

Even  permutationsform the alternating group An (whose order is  n!/2 ). It's thederived subgroup of the symmetric group: An = S'n

Notations for small permutations :

One standard way to record computations in the realm of very small finite groups is to use a string of different characters  (digits or letters) to denote the permutation which transforms the sorted elements in the top row intothe matching elements of the bottom row.  Both row are placed between parentheses. Juxtaposition of two such notation indicates the composition of the functions so denoted,  with the usual convention that the rightmostfunction is to be applied first  (composition isn't commutative):

 
 
 fg   gf 
 1234 
1243
 1234 
1324
   =    1234 
1423
  1234 
1324
 1234 
1243
   =    1234 
1342
 

Cycle decomposition of a permutations :

cyclic permutation  of  n  elements is denoted by a sequencebetween parentheses.  The image of an element is the element to its right (the last element is mapped back to the first one).  There are  n equivalent ways to denote such a permutation,  since there's a free choice ofwhich element is written first in the list.  Equivalent notations are equated:

(1 4 5 3 2)   =   (4 5 3 2 1)

cycle  is a permutation of  n  elements which is a cyclic permutation  of  m  of those elements  (m ≤ n) which leaves the others unchanged.  Two or more cycles are said to be disjoint when operate on different elements  (each cycle applies only to elements which are leftunchanged by the others). Any permutation can be decomposed as a composition of disjoint cycles in a unique way (up to the order of those cycles, which is irrelevant since disjoint cycles commute). Our previous example entail cycles which do not commute because they're not  disjoints.  namely:

(3 4) (2 3)   =   (2 4 3)                 (2 3) (3 4)   =   (2 3 4)

A cycle of order 2  (a 2-cycle)  is called a switch  ora transposition. It's useful to know that the signature of a cycle of order  n  is  (-1)n+1.

Cayley's Group Theorem  (1878) :

Arthur Cayley (1821-1895)observed that a group  G is always isomorphic to a subgroup of  Sym(G).

Proof :  In themultiplicative group  G, we associate to an element a the bijection  T(a)  which sends an element  x  to ax . T is an injective homomorphism  (i.e.,  a monomorphism) from  G  to  Sym(G), which is called the regular representation  of G.

T(a) T(b)   =   T(a b)

So, any finite group of order  n  is isomorphic to asubgroup of SQED


(2006-03-02)  
Aninner automorphism is aconjugation by a given element of  G.

To any element a  of  G  is associateda special type ofautomorphism,called an inner  automorphism (French: automorphisme intérieur ) defined as follows ( fa  is called conjugation by a ).

x,  fa(x)  = a xa-1     [ Note that fafb = fab ]

Under function composition, inner automorphisms  formanormal subgroup  (see proof later in this section) denoted  Inn(G), of the group of the automorphisms on G, denoted  Aut(G) (itself a subgroup of Sym(G),thesymmetric group on G). Conjugation by a is the identity function just if a belongsto thecenter of  G.  Consequently:

Inn(G)  is isomorphic to thequotient of G  by itscenter.

Note that a subgroup  H  of  G  which is mapped onto itself by any  inner automorphismis a  normal subgroup  (alsocalled invariant subgroup).

More generally,  two subgroups of G are said to be conjugates of each other when there is an inner isomorphism  between them.


The above claim that Inn(G)  is a normal subgroup  of  Aut(G) is established by showing thatconjugation by any  automorphism  g  of an innerautomorphism  (conjugation by a) yields another inner automorphism.  That can be proved in a single line:

x,    gfa g-1 (x)  =  g (a g-1(x)a-1)  =  g(a) x g(a)-1  =  fg(a)(x)


(2006-03-02)  
The members of  Out(G)  are classes  of automorphisms of G.

The outer automorphism group  of the group  G is defined as the quotient  of its group of automorphisms by its group of inner automorphisms :

Out(G)  =  Aut(G) / Inn(G)

Unfortunately, the elements of Out(G) are known asouter automorphisms although they're not "automorphisms" at all !


(2014-12-17)  
A concept unrelated  to thecompletenessofmetric oruniform spaces.

A group  G  is said to be centerless when itscenter istrivial,  which is to saythat only the identity element commutes with every element.

complete group  is a centerless group whose only automorphisms are theinner  ones.  (Equivalently, it's a group whose center and outer automorphism group  are trivial.)

If a group  G  is complete, it's isomorphic to  Aut(G) (itsautomorphisms). However, the converse need not be true  (one counterexample isD4 ).


(2020-09-14)  
Variously named after Cauchy (1845), Frobenius (1887) or Burnside...

 Come back later, we're still working on this one...


(2006-03-20)  
The conjugacy classes of a group G form apartition of G.

Two elements  x  and  y  of a group  G  are said to be conjugates when there's aninner automorphism from one to the other,that is, when there's an element a  of  G such that ax = ya.

So defined, conjugacy  is an equivalence relation  (it's reflexive, symmetric and transitive).The conjugacy class  of an element  x  is the set ofall elements of  G  which are conjugate to it. Every element is in one and only one of those classes (equivalence classes always form such a partition). 

If  x  is in thecenter of G, denoted Z(G), then the conjugacy class of  x  is simply  {x}  (a set of only one element). More generally, we would establish that the number of elements that are conjugateto  x  is equal to theindex in  G of thecentralizer  C  of  {x}. That number is usually denoted  [ G : C ].

Tallying the conjugacy classes with more than one element by assigning eacha different index  i,  we obtain the so-called conjugacy class formula :

| G |   =   | Z(G) |  +  i [ G : Ci]

The second term is an empty sum  (equal to zero)  when G is commutative.


(2006-03-05)  
A group is simple when it has just two normal subgroups.

{e}  and  G  are trivially always normalsubgroups  of  G. The group  G  is said to be simple  when itsonly normal subgroups  are those two.

Just like1 isn't said to be prime,the trivial group  {e}  isn't called "simple".


(2006-03-06)  
G',  G(1)  or [G,G] is the subgroup of Ggenerated by its commutators.

The commutator  [x,y]  of two elements of themultiplicative group  G  is:

[x,y]   =   x y x-1 y-1  =   x y (y x)-1

The set of all commutators isn't necessarily a subgroup. What's called the derived subgroup (orcommutator subgroup) is the subgroup theygenerate (i.e., the smallest subgroup which includes all commutators).

The derived subgroup of a group is anormal subgroup, as the following identity demonstrates  (since the set of commutators is thus shownto be stable under any inner automorphism,so is the subgroup theygenerate).

a [x,y]a-1   =  [axa-1,aya-1 ]

G'  is also the smallest  normal subgroupof  G  whose quotient group  in  G is abelian  (i.e.,commutative).  The group G/G'  is known as the abelianization  of  G (it's the largest abelian quotient in G).

Examples of Derived Subgroups :

The derived subgroup of any abelian group  is the trivial  subgroup.

The derived subgroup of thesymmetric group Sn  is the alternating group An. The derived subgroup of the alternating group is itself: A'n = An.

The derived subgroup of theQuaternion group  is  {+1,-1}.

Derived Series :

It's the sequence where the  n+1 st  term is the derived subgroup of the n-th one  (starting with the whole group when  n = 0).


(2006-03-21)  
The group made from the independent juxtaposition of several groups.

The direct product  of two groups  G  and  H  is thegroup obtained by using for the cartesian product G  H independent operations on the components:

(g,h) (g',h')   =   ( g h , g'h' )

The term direct sum  is used for the same concept withadditive notations:

(g,h) + (g',h')   =   ( g+h , g'+h' )

Similar rules can be used for cartesian products of any number of monoids.

Extensions to infinitely many components :

The concept extends naturally to direct sums  (or direct products )  of infinitely many monoids. Such direct sums are usually understood to be finitely restricted (by considering just the elements having only a finite number of componentsthat differ from the relevant neutral element).

For example, thefundamental theorem of arithmeticprovides a standard isomorphism between the multiplicative monoid of the positive integersand the finitely restricted direct sum of infinitely many copies of the nonnegativeintegers  (each such copy being associated with a prime number). Using standard notations,this can be expressed as:

(N*, )   =  (N(P) , + )

Note that the set appearing in the right-hand-side of the above is countable,because of the parenthesized exponent which indicates a finite restriction in theabove sense.  A lack of parentheses around the exponent would denoteanuncountable setwhich is rarely investigated, if ever (that beast includes elements idenfified with products of infinitely manycoprime integers).


(2016-01-10)  
Finiteabelian groups are either cyclic or direct sums.

Thus, if  n  is the  k-th  power of a prime,the number of non-isomorphic  abelian groups is equal tothe number  p(k)  of partitions  of k.

More generally,if the prime factorization  of  n  is  q1k1 q2k2... qmkm  then the number of non-isomorphic abelian groups of order  n  is equal to:

Abel ( n )   =  p( k1)  p( k2)  ...  p( km)

That's a multiplicative function of  n.  which depends only on its prime signature (A000688).

For what n are there one million abelian groups of order n ?

By trying only the first 61, we see that the only partition numbers which divide  1000000  are  p(1) = 1,  p(2) = 2  and  p(4) = 5. Therefore, there are exactly  1000000 distinct abelian groups of order  n if and only if the factorization of  n  consists of:

  • 6  primes of multiplicitity  4.
  • 6  primes of multiplicitity  2.
  • Any number of primes of multiplicitity  1  (possibly none).

The smallest example is a 35-digit  integer:

(2 . 3 . 5 . 7 . 11 . 13)4  (17 . 19 . 23 . 29 . 31 . 37)2  =  4.96597898...34


(2019-04-11)  


(2019-04-11)  


(2014-12-21)  
A semi-direct product of  G  andits group of automorphisms  Aut(G).

If f  is a homomorphism  from a group H  to  Aut(G),  the semi-direct product of  G  and  H  with respect to f  is the group denoted G f H  consisting ofthecartesian product G  H  with the multiplication :

(x,a)  (y,b)   =  ( xf (a) (y) , ab )

When f  is the trivial homomorphism  (i.e., f (a)  is the identity of  G  for any a) this semi-direct product  is just the direct product  of  G  and  H.

Holomorph :

When  H  is equal to  Aut(G)  we may use the identity of  Aut(G) as the homorphism f  appearing in the above definition and define the holomorph  Hol(G)  as the semi-direct product of  G  and  Aut(G)  in which :

(x,a)  (y,b)   =  ( xa(y) , ab )


(2006-03-05)  
Groups of small orders and their families...

Additive notations (using the symbol "+" for the operator) are often used for commutative groups  (abelian groups). Groups isomorphic to the group Cn = (Z/nZ, +) of residuesmodulo n arecalled cyclic groups.

Cyclic Group C5
+ 0  1  2  3  4 
 0 01234
 1 12340
 2 23401
 3 34012
 4 40123

All groups of prime  order are cyclic (asLagrange's Theorem implies that the subgroupgenerated by a nonneutral elementis equal to the entire group). The same is true for groups whose order is a cyclic number  (i.e., an integercoprimeto itsEuler totient). That result is due toWilliamBurnside.

The smallest noncyclic  groups are thus of order  4 and 6. The Klein group  is the noncyclic group of order 4. The smallest noncommutative  group is the following group S3 = D3 (the 6 symmetries of an equilateral triangle).

Klein Group
+ 0  1  2  3 
 0 0123
 1 1032
 2 2301
 3 3210
Dihedral Group D3
  A  B  C  D  E  F 
 A ABCDEF
 B BCAEFD
 C CABFDE
 D DFEACB
 E EDFBAC
 F FEDCBA
The Klein Group  (V) is isomorphic to the direct sum  C2  C2
Felix Klein called it Vierergruppe in 1884.
 

The dihedral group Dn consists of the 2n symmetries of a regular n-gon (n rotations, nflips).

 August Kekule

There are 5 groups of order 8.  Three are abelian : C8  and the twodirect sums C2+C4   and C2+C2+C2 (the additive group of thefield of order 8). The other two groups of order 8 are noncommutative, namely the dihedral groupD4  (thesymmetries of a square)and the quaternion group Q:


(2006-03-05)  

i 2   =  j 2   =  k 2   =  i j k   =   -1 
Quaternion Group  Q8
 1ijk-1-i-j-k
11ijk-1-i-j-k
ii-1k-j-i1-kj
jj-k-1i-jk1-i
kkj-i-1-k-ji1
-1-1-i-j-k1ijk
-i-i1-kji-1k-j
-j-jk1-ij-k-1i
-k-k-ji1kj-i-1
 
 Redeyes and Bluejays
 
Red (i) and Blue (j)
generators of
 Q8

The real line combined with an oriented 3-dimensional Euclidean space of orthonormal basis  (i,j,k) forms the quaternions,  a  4-dimensional normed division algebra similar to  2-dimensional complex numbers, except multiplicationis not  commutative:

(a,A) + (b,B)=(a+b ,A+B )
(a,A)  (b,B)=(ab -A.B  , aB +bA +AB )

This is how the 3-dimensional "dot product" and "cross product"were invented,well before the generalized idea of avectorbecame commonplace.

The above quaternionic units can be used to build a Dirac operator  D (yielding the opposite of the Laplacian   when applied twice):

D    =   i x  + j y  + k z

The Laplacian remains the same in two systems of coordinates (a.ka.reference frames)obtained from each other by rigid rotation.


(2023-03-10)  
The law for multiplication in thealgebra generatedby the Dirac matrices.

The multiplicative group generated by the four gamma matrices a,b,c,d is of order 32. It consists of 16 disjoint pairs of elements which are (additive) opposites of each other. With one element of each such pairs, we form a basis for thealgebra of dimension 16 generated by the 4 gamma matrices.

The group clearly contains the identity matrix of dimension four (I) and the product  e = abcd. Introducing  e  allows every element of the group to be uniquely representedby a sign (+ 1 or -1) along with a signed product of at most two factors among the five elementary elementsa,b,c,d,e.  Withzero such factors, we have 2 elements (+I and -I), with one factor we have 10 elements  (a,b,c,d,e and their opposites) and with 2 distinct factors,we obtain  20 = 2×C (5,2)  elements.  The grand total is indeed 32.

Among the 32 elements of the gamma group, we find:

  • 1 element of order 1, namely I.
  • 15 elements of order 2:  -I, a, -a, ab, -ab, ac, -ac, ad, -ad, ae, -ae.
  • 20 elements of order 4, whose square is -I.

 Come back later, we're still working on this one...

Products of gamma matrices : a =0  b =1  c =2  d =3   (with e = abcd)
0Grade 1Grade 2  (bivectors)Grade 34
Iabcdabacadbcbdcdaebecedee
aIabacadbcdde-cebeecd-bdbcae
b-ab-Ibcbda-dece-c-dae-cd-e-adacbe
c-ac-bc-Icddea-beb-ae-dbdad-e-abce
d-ad-bd-cd-I-cebeaaebc-bc-acab-ede
ab-b-ade-ceI-bc-bd-ac-ade-be-ae-dccd
ac-c-de-abebcI-cdab-e-ad-ced-ae-b-bd
ad-dce-be-abdcdIeabac-de-cb-aebc
bcdec-baeac-abe-Icd-bd-dce-be-a-ad
bd-ced-ae-bad-e-ab-cd-Ibccdea-beac
cdbeaed-cead-acbd-bc-I-b-ade-ce-ab
ae-e-cdbd-bcbecede-dc-bIabacad-a
becdead-acaed-c-ce-de-a-ab-Ibcbd-b
ce-bd-adeab-daebbea-de-ac-bc-Icd-c
debcac-abec-bae-abece-ad-bd-cd-I-d
e-ae-be-ce-decd-bdbc-adac-ababcd-I

This algebra of dimension 16 is known as the spacetime algebra  Cl (1,3) which is just the Clifford algebra  of dimension 4 with Minkowski metric.

Pseudoscalars (Grade 4) commute only with scalars or bivectors (Grade 2). The bivectors and the scalars form the centralizer  of the pseudoscalars.

The above table doesn't depend on Dirac's representation of  a,b,c,d  in terms of  4×4  matrices. It can be entirely constructed from the pairwise anticommutativity of a,b,c,d and the following relations. Therefore, an isomorphic group is entirely specified by a choice of a basis of four mutually anticommutative elements verifying these:

a2 = I ,      b2 = c2 = d2 = -I      and the definition   e = abcd

The last relation implies that  e2 = -I   and also that  e  anticommutes with the other four. Thus,  a  is special  (it's the only single-letter element which squares to unity)  but b,c,d,e  are placed on an equal footing.

Here's one remarkable identity:

det ( ta + xb + yc + zd + ue)   =   ( t 2 x 2 y 2 z 2 u 2) 2

Enumeratimg the automorphisms of Dirac's gamma group :

Let f  be an automorphism. f (a)  must be of order 2 and is therefore, up to a change of sign,  an element of  {a,ab,ac,ad,ae}. For the three distinct images of b,c,d to anticommute with f (a)  and with each other, they must belong to  {b,c,d,e}  up to sign.  Conversely, if those conditions are met, the images of a,b,c,d generate the whole group,  as the above table can be constructed usingonly the rules for combining single letters.  Thus,  we have  5  choicesfor f (a)  and  4×3×2  choices for the other three letters, knowing that we may then pick any choice of four signs among  16  possibilities. Therefore:

Dirac's Gamma group has  5! 24   =   120 × 16   =   1920   automorphisms.


(2014-12-17)  
The octic group  is represented by the eight symmetries of a square.

This is a centerless group  G  isomorphic to  Aut(G)  but not to  Inn(G). A nice example of an incomplete  group isomorphic to its automorphisms.

The dihedral group D4 can be represented as the group of the 8 symmetries of a square, with vertices numbered clockwise  1,2,3,4. It'sgenerated by :

  • r   =   (2341)   =   Quarter-turn clockwise  (order 4).
  • s   =     (42)     =   Flip about a diagonal  (order 2).
Dihedral Group D4
  A  B  C  D  E  F  G  H 
 A ABCDEFGH
 B BCDAHEFG
 C CDABGHEF
 D DABCFGHE
 E EFGHABCD
 F FGHEDABC
 G GHEFCDAB
 H HEFGBCDA
 s r s   =   r -1   =   (1432)
 
A   =   e
B   =   r
C   =   r2
D   =   r3
E   =   s
F   =   s r    =   r3 s
G   =   s r2   =   r2 s
H   =   s r3   =   r s
  • A  is the identity.
  • C  is the half-turn.
  • B and D  are quarter-turns.
  • E and G  are diagonal flips.
  • F and H  are side flips.
Swapping an even  number of the above pairsyields one of the inner automorphisms tabulated at right.
The 4 inner automorphisms 
are all even permutations :
  A  B  C  D  E  F  G  H 
 fA = fC ABCDEFGH
fB =fDABCDGHEF
fE =fGADCBEHGF
fF =fHADCBGFEH

If there was an automorphism swapping an odd number of the threepairs (B,D), (E,G) and (F,H) thenwe could combine it with one of the four inner automorphisms toobtain some automorphism f  leaving  (A,B,C,D)  invariant andswapping either (E,G) or (F,H).  Neither is possible, since:

  • If f  only swaps E and G, then  f (B) f (F)  =  B F  =  E   f (B F)  =  G
  • If f  only swaps F and H, then  f (B) f (E)  =  B E  =  H   f (B E)  =  F

Therefore, any other automorphism must involve sending at leastone element of the three aforementioned pairs to an element of another.

Any automorphism must leave invariant  A  (the identity)  and  C (the only other element with a square root). Likewise, the order-4 elements, B and D, must be invariant or transform into each other. 

 Come back later, we're still working on this one...

Aut ( D) , the group of automorphisms of D,  is isomorphic to D4.

One of the  8  isomorphisms between D4 and  Aut ( D)
 D4Aut ( D)Inn ( D)
A1234eABCDEFGHafA = fC
B2341rABCDFGHEb 
C3412r2ABCDGHEFcfB = fD
D4123r3ABCDHEFGd 
1E1432sADCBEHGFefE = fG
2F2143s r  = r3sADCBHGFEf 
3G3214s r2 = r2sADCBGFEHgfF = fH
4H4321s r3 = r sADCBFEHGh 

The  9 propersubgroupsof D4  areabelian. Seven of them are cyclic (one of order 1, five of order 2, one of order 4)  and two areKlein groups.

The octic group  may also be represented  as a group of 2 by 2 matrices:

ABCDEFGH
 1  0 
0  1
 0  1 
-1 0
-1  0 
 0 -1
 0 -1 
1  0
 0  1 
1  0
-1  0 
0  1
 0 -1 
-1  0 
 1  0 
0 -1
err2r3ss rs r2s r3


(2006-05-09)  
The number g(n) of different groups of order n  (up to isomorphism).

If the integer  n  iscoprime with itsEuler totient (n), then there's only one group of order  n (the cyclic group).  This applies to the following values of  n: 1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51...(A003277). This result is attributed toWilliamBurnside (1852-1927) and those numbers are known as cyclic numbers.

For noncyclic orders (A060679) here's the number of distinct groups:

Number ofgroups of order  n  (A000001)
  n   g(n)   n   g(n)   n   g(n)   n   g(n)   n   g(n)   n   g(n) 
4
6
8
9
10
12
14
16
18
20
21
22
24
25
2
2
5
2
2
5
2
14
5
5
2
2
15
2
26
27
28
30
32
34
36
38
39
40
42
44
45
46
2
5
4
4
51
2
14
2
2
14
6
4
2
2
48
49
50
52
54
55
56
57
58
60
62
63
64
66
52
2
5
5
15
2
13
2
2
13
2
4
267
4
68
70
72
74
75
76
78
80
81
82
84
86
88
90
5
4
50
2
3
4
6
52
15
2
15
2
12
10
92
93
94
96
98
99
100
102
104
105
106
108
110
111
4
2
2
231
5
2
16
4
14
2
2
45
6
2
112
114
116
117
118
120
121
122
124
125
126
128
129
130
43
6
5
4
2
47
2
2
4
5
16
2328
2
4

g(n) = 2   if  n  is either the square of a prime or  a squarefree number with only one  of its prime factors congruent to  1 modulo another (A054395). The following table gives, for each  m, the numbers  n  for which  g(n) = m.

Numbers  n for which there areprecisely m  groups of order n
 m nSloanes's
11, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47...A003277
24, 6, 9, 10, 14, 21, 22, 25, 26, 34, 38, 39, 45, 46, 49, 55, 57, 58...A054395
375, 363, 609, 867, 1183, 1265, 1275, 1491, 1587, 1725, 1805...A055561
428, 30, 44, 63, 66, 70, 76, 92, 102, 117, 124, 130, 138, 154, 170...A054396
58, 12, 18, 20, 27, 50, 52, 68, 98, 116, 125, 135, 148, 164, 171...A054397
642, 78, 110, 114, 147, 186, 222, 225, 258, 310, 366, 402, 406...A135850
7375, 605, 903, 1705, 2255, 2601, 2667, 3081, 3355, 3905, 4235...A249550
8510, 690, 870, 910, 1122, 1190, 1330, 1395, 1410, 1590, 1610...A249551
9308, 532, 644, 836, 868, 1316, 1364, 1652, 1748, 1815, 1876...A249552
1090, 132, 198, 276, 306, 350, 414, 490, 522, 564, 650, 708, 738...A249553
11140, 364, 380, 460, 476, 572, 748, 819, 860, 940, 988, 1036...A249554
1288, 152, 184, 196, 204, 210, 248, 330, 344, 348, 376, 390, 462...A249555
1356, 60, 150, 189, 441, 726, 837, 945, 1012, 1161, 1204, 1521...A294155
1416, 36, 40, 104, 232, 296, 351, 424, 488, 808, 872, 1125, 1192...A292896
1524, 54, 81, 84, 136, 220, 228, 250, 260, 328, 340, 372, 513, 516...A294156
16100, 126, 234, 405, 550, 558, 676, 774, 812, 1098, 1156, 1206...A295161
17675, 3267, 3549, 9947, 11475, 12625, 14283, 14749, 15525...A294949

Smallest n for which there are exactly m groups of order n (A046057):
1, 4, 75, 28, 8, 42, 375, 510, 308, 90, 140, 88, 56, 16, 24, 100, 675...

The convention would be to have a zero term to indicate that there's no such n but it's conjectured  that this never happens.


(2006-03-05)     (1982)
The final result of the work ofmanygroup theorists overmany years...

The finitesimple abelian groups  are just thecyclic groups of prime order.

The classification of noncommutative finite simple groups is much  tougher... Arguably, the final classification effort started with the 1963 publication ofa 255-page proof of the Odd Order Theorem (or Feit-Thompson theorem) which implies that all noncommutative simple finite groups are of even order:

Solvability of Groups of Odd Order
by JohnG. Thompson (1932-)  and  Walter Feit(1930-2004).
Pacific Journal of Mathematics 13 (1963)   775-1029.

The classification was declared complete in 1982, despite pending gaps... This was the result of a tremendous collective effort, spanning decades. A key figure in this accomplishment wasDanielGorenstein (1923-1992).

The Classification Theorem :

Unless it's one of the  27 sporadic groups  presentedbelow (including the Tits Group, often dubiously tallied with twisted Chevalley groups) a finite simple group must belong to one of the following 18 countable families:

  • Thecyclic groups Cp  of prime order  p.
  • Thealternating groups An  of degree n > 4   (A5  is of order  60 ).
  • 16  types of Chevalley groups, listed below, eachuniformly described in terms of a finite field of order  q  (q  being the power of a prime). For example, the first such type consists of the projective group of square matrices of dimension  n+1  with coefficients in Fq :

An(q)   =   PSL (n+1,Fq)

Simple Chevalley Groups   ( u v  denotes the GCD of  u  and  v)
SymbolOrder
An(q) ;   n > 0
(q>3 if n=1)
qn(n+1)/2
Vinculum
(n+1) (q-1)
n(qi+1-1)
      
i =1
Bn(q) ;   n > 1
Except  B2(2)
qn2
Vinculum
2 (q-1)
n(q2i -1)
      
i =1
Cn(q) ;   n > 2
Dn(q) ;   n > 3
qn(n-1)  (qn-1)
Vinculum
4 (qn-1)
n-1(q2i -1)
      
i =1
E6(q)q36 (q12-1) (q9-1)(q8-1) (q6-1)(q5-1) (q2-1)/ 3 (q-1)
E7(q)q63 (q18-1) (q14-1)(q12-1) (q10-1)(q8-1) (q6-1) (q2-1)/ 2 (q-1)
E8(q)q120 (q30-1) (q24-1)(q20-1) (q18-1)(q14-1) (q12-1)(q8-1) (q2-1)
F4(q)q24 (q12-1) (q8-1)(q6-1) (q2-1)
G2(q)
Except  G2(2)
q6 (q6-1) (q2-1)
2An(q) ;   n > 1
qn(n+1)/2
Vinculum
(n+1) (q+1)
n(qi+1- (-1)i+1)
      
i =1
2B2(q)
q = 2 2m+1 > 2
q2 (q2+1) (q-1)
2Dn(q) ;   n > 3
qn(n-1)  (qn+1)
Vinculum
4 (qn+1)
n-1(q2i -1)
      
i =1
3D4(q)q12 (q8+q4+1) (q6-1) (q2-1)
2E6(q)q36 (q12-1) (q9+1) (q8-1)(q6-1) (q5+1) (q2-1)/ 3 (q+1)
2F4(q)
q = 2 2m+1 > 2
q12 (q6+1) (q4-1) (q3+1) (q-1)
2G2(q)
q = 3 2m+1 > 3
q2 (q2+1) (q-1)

Chevalley groups  are named after ClaudeChevalley (1909-1984)  who was the youngest founder of theBourbaki group in 1935.

In 1955, Chevalley  found a uniform way to describe Lie  groups over arbitrary fields. With finite fields, this led to what J.H. Conway (1937-2020) and others have called untwisted  Chevalley groups (they're listed first in the above table,  with unsuperscripted symbols).

The twisted  Chevalley groups  (denoted by superscripted symbols)  resultfrom two modifications of Chevalley's approach.  One was proposed in 1959 by Robert Steinberg (1922-2014). Theother (1960-1961)is due to Michio Suzuki (1926-1998)  and Rimhak Ree (1922-2005).

The above highlighted entry 2F4(2 2m+1) is simple  only for positive values of m. For m=0,  this group is not simple but it has a simple normal subgroupofindex 2  and order  17971200 (itsderived subgroup)  which is known as the Tits Group, and is best classified among sporadic  groups.


(2006-03-06)  
Noncommutative non-alternating finite simple groups  not ofLie type.

20 of these are related to the largest and most famous of them all,  the Fischer-Griess Monster. Six other sporadic groups ( highlighted )unrelated to the Monster  are known as oddments  or pariahs.

The  27th sporadic group is, arguably, the aforementioned Tits Group.

The Tits Group  and the other 26 Sporadic Groups
Author /Name Symbol Order
Fischer-Griess
Monster
M = F1
Fischer's
Baby Monster
B = F2
 241 313 56 72 11 13 17 19 23 31 47  =
4154781481226426191177580544000000 
Bernd FischerFi'24
 221 316 52 73 11 13 17 23 29  =
1255205709190661721292800 
Zvonimir JankoJ4
 221 33 5 7 113 23 29 31 37 43  =
86775571046077562880 
John H. ConwayCo1221 39 54 72 11 13 23  =   4157776806543360000 
Bernd FischerFi 23218 313 52 7 11 13 17 23  =   4089470473293004800 
JohnThompsonTh = F3215 310 53 72 13 19 31  =   90745943887872000 
Richard LyonsLy28 37 56 7 11 31 37 67  =   51765179004000000 
Harada-NortonHN = F5214 36 56 7 11 19  =   273030912000000 
Bernd FischerFi 22217 39 52 7 11 13  =   64561751654400 
John H. ConwayCo2218 36 53 7 11 23  =   42305421312000 
John H. ConwayCo3210 37 53 7 11 23  =   495766656000 
Michael E. O'NanO'N29 34 5 73 11 19 31  =   460815505920 
M. SuzukiSuz213 37 52 7 11 13  =   448345497600 
Arunas RudvalisRu214 33 53 7 13 19  =   145926144000 
Dieter HeldHe = F7210 33 52 73 17  =   4030387200 
McLaughlinMcL27 36 53 7 11  =   898128000 
Emile MathieuM24210 33 5 7 11 23  =   244823040 
Zvonimir JankoJ327 35 5 17 19  =   50232960 
Higman-SimsHS29 32 53 7 11  =   44352000 
Jacques Tits2F4(2)'211 33 52 13  =   17971200 
Emile MathieuM2327 32 5 7 11 23  =   10200960 
Hall-JankoHJ = J227 33 52 7  =   604800 
Emile MathieuM2227 32 5 7 11  =   443520 
Zvonimir JankoJ123 3 5 7 11 19  =   175560 
Emile MathieuM1226 33 5 11  =   95040 
Emile MathieuM1124 32 5 11  =   7920 

Sporadic Notes :

The Mathieu group  M21  doesn't belong to the above list. It's simple  but can't be considered sporadic because it's isomorphic to PSL(3,4):

M21   =   PSL(3,4)   =   PSL(3,F4)   =   A2(4)

The Fischer-Griess Monster Group is also known as Fischer's Monster  orthe Monster Group. It was predicted independently by Bernd Fischer and Robert L. Griess in 1973. At first, Griess dubbed it the Friendly Giant and constructed it explicitely in1981,as the automorphism group of a 196883-dimensional commutative nonassociativealgebra over the rational numbers.

The Leech Lattice  isthe densest packing of 24-dimensional hyperspheres (each touches 196560 others).  Its automorphisms featureacenter of order two. Modulo that center, they formthe Conway Group  (Co1).

Simon P. Norton gave a construction of the group proposed byKoichiroHarada  (now called the Harada-Norton group). Norton also proposed the monstruous moonshineconjecture  with his advisor,John H. Conway.

The Higman-Sims Group  (HS)  is named after Donald G. Higman and Charles C. Sims,who described it jointly in 1968.  It's a subgroup ofindex 2in the group of automorphisms of the Higman-Sims graph (the strongly-regular graph with 100 nodes of degree 22, where adjacent nodeshave no common neighbors and nonadjacent nodes have 6 common neighbors).

The Hall-Janko Group  (HJ) is named after Marshall Hall,Jr. (1910-1990)  and Zvonimir Janko (1932-). It's a subgroup ofindex 2in the automorphisms of the Hall-Wales graph constructed in 1968 by David Wales, as the strongly-regular graph with 100 nodes of degree 36, where adjacent nodes have 14 common neighborsand nonadjacent nodes have 12  (also calledHall-Janko graph).

The modern quest for a complete list of sporadic groups was launched bythe discovery of the first of theJanko Groups (J1) by Zvonimir Janko,  in 1965.

The first sporadic groups (M11 , M12, M22,M23, M24) are subgroups of  M24   discovered between 1860 and 1873byEmile Mathieu (1835-1890; X1854). Georg Frobenius (1849-1917) proved  M12  to besimple in 1904.


(2017-08-02)  
T  is the set of all elements of  G  which have a finite order.

An element of finite order is called a torsion element. If the identity is the only such element,  the group  G is said to be torsion-free.

A torsion element whose order divides  k  is called a  k-torsion.

On the other hand,  a torsion group  (also called a periodic group) is a group consisting only of torsion elements  (which is to say that all elements have finite orders). All finite groups are periodic  (i.e.,  Tor(G) = G). If the orders of the elements in a periodic group are bounded, then they have a least common multiple  n  and the groupis said to be of exponent  n.

One example of an infinite  finitely-generated torsion group was given in 1964, by Evgeny Golod (1935-2018) and Igor Shafarevich (1923-2017).


(2015-05-03)  
Homomorphisms from G into a group of matrices.

GL(n,K)  is the group of invertible n by n matrices with entriesin afieldK.

 Come back later, we're still working on this one...

All finite groups are linear. 
Compact groups...
Lie groups...
Faithful representations (isomorphisms).
Irreducible representations do not allow any nontrivialproper invariant subspace.


(2023-04-04)  
Groups which are also smooth manifolds  (locally Euclidean).

The tangent space to a Lie group is a Lie algebra. The converse is true in finitely many dimensions but there are Lie algebras with infinitelymany dimensions which cannot be realized as the tangent space to a Lie group. The earliest counterexample is due to the bourbakist Adrien Douady (1935-2006).

 Come back later, we're still working on this one...


(2006-03-01)    (multiplicative subgroups ofmatrices)
Groups of transformations depending on parameters in a field.

Theclassical groups tabulated below are subgroups of the group GL(n,K) of invertible n by n matrices with entries in thefieldK.

When K  isn't specifed, the fieldof real numbers  (R)  is understood, except thatthe field of complex numbers  (C)  underlies the groups denoted U(n)  and SU(n)  (note, however, that the "dimension"listed is always thereal dimension, which is twice thecomplexdimension whenever applicable).

A subgroup of GL(n,K)  is called a linear representation (or simply a representation)  of any group it happens to beisomorphic to.

A*  denotes the adjoint  of the squarematrix A  (namely, the "conjugate transpose"of a complex matrix, or simply the transpose of areal matrix).

A matrix is said to be unimodular  if its determinant  is 1. In the symbol of a group, the letter "S" (for  special)says that its elements are unimodular.

Classical Groups of Matrices
Symbol(s)DimensionName(s) and/or Description
GL(n)n2General linear group (ofRn).
Nonsingular real matrices  ( det(A) 0 ).
SL(n)n2-1Special linear group (ofRn).
Unimodular real matrices  ( det(A) = 1 ).
O(n)n(n-1)/2Orthogonal group (ofRn).
Orthonormal matrices  (A A* =1 )
SO(n)
O+(n)
n(n-1)/2Special orthogonal group.
Rotations ofRn (A A* =1 ,  det(A) = 1 )
Sp(2n,R)n (2n+1)Symplectic group(ofRn).
??? (A A* = )
GL(n,C)2n2General linear group ofCn.
Nonsingular complex matrices  ( det(A) 0 ).
SL(n,C)2n2-2Special linear groupofCn.
Unimodular complex matrices  ( det(A) = 1 ).
U(n)
O(n,C)
n2Unitary group (ofCn).
Unitary matrices  (A A* =1 )
SU(n)
SO(n,C)
n2-1Special unitary group(ofCn).
Unitary unimodular matrices  (A A* =1 ,  det(A) = 1 )
Sp(2n,C)2n(4n+1)Symplectic complex group(ofCn).
??? (A A* = )
Z(n)
Z(n,C)
1
2
Scalar group.
Nonzero scalar multiples of the identity matrix (A =1 )
SZ(n,C)
SZ(n,K)
0Unimodular scalar group.
The finite  group formed by all the "nth roots of unity".
PGL(n)
PGL(n,C)
n2-1
2n2-2
Projectivelinear group.
PGL(n,C)  =  GL(n,C) /Z(n,C)
PSL(n,C)2n2-2Projective special linear group.
PSL(n,C)   =  SL(n,C) /SZ(n,C)

Alternate Notations :

A notation like GL(Kn)  may also be used instead of GL(n,K).  This has the great advantage of being consistentwith more general symbols like GL(V)  which apply to avector space V whose dimension may  be infinite.

On the other hand, when afinite field is used,GL(n,GF(q))  may be denoted GL(n,q). A similar convention holds for all the symbols tabulated above. For example,the first type ofChevalley groups is PSL(n,q) = An(q).

Some Special Cases :

  • The simplest unitary group is the "unit circle" or circle group (denotedT)  which is isomorphic to U(1)SO(2)  and  R / Z.
  • SZ(n,C)  is thecyclic group of order n (it does "look" cyclic).
  • The Möbius Group is isomorphic to PGL(2,C)  and/or PSL(2,C).


(2020-09-22)  
Groups of diffeomorphisms over a smooth manifold.

With K =R(orC)  the aboveclassical groups  are examples of Lie groups.


(2016-05-21)  
Linear group modulo the scalar group or any group modulo itscenter.

Traditionally,the projective group is the quotient of the general linear group (i.e., the group of all squarematricesof a given dimension over a givenfield) modulo the scalar group  (i.e., the diagonal matrices).

The term is also used as a qualifier to denote the quotientsnodulo the scalar group of some subgroups of the general linear group.

By extension, the qualifier projective  can even beused to denote the quotient of any group modulo its owncenter. (See modular group.)


(2006-04-12) 
The automorphisms of the Riemann Sphere (the projective line).

An homographic transformation  f (also called a Möbius transformation  or a fractional linear transformation)  sends acomplex number  z  to:

 f (z)   =   a z  + b
Vinculum
c z  + d

It's a  [bijectivetransformation  of the projective line (the complex plane plus a single "infinity"point    beyond its horizon, so to speak). The image of    is a/c (or    if  c = 0 ). The image of -d/c (or    if  c = 0 ) is  .

The Stereographic Projection
Projective LineRiemann Sphere
 C    (a,b,c)   C3   |  a 2 +b 2 +c 2  =  1  
(0,0,1)
  z   =    a  + i b  
Vinculum
1c
(a,b,c)    c 1
z  =  u +iv
   2 u  ,  2 v  ,  | z | 2  1   
VinculumVinculumVinculum
| z | 2+ 1| z | 2+ 1| z | 2+ 1

Automorphic functions (originally dubbed "Fuchsian functions" by Poincaré,around 1884)  are meromorphic functions (i.e., ratios of two holomorphic functions; analytic functions of a complex variable)  whichare invariant under a countable infinity ofMöbius transformations).


(2016-05-22) 
The common name of the projective special linear group  PSL(2,Z).

The locution gamma group  is best reserved for something else.

The modular group  consists of all 2 by 2 squarematriceswith integer  elements (inZ) and unit determinant (that's what special  means) when considered modulo  the center {I,-I}  (that's what projective  means).

The modular group  has the followingpresentation:

  =  < S, T  |  S2, (ST)3 >

  is a discrete subgroup of the Möbius grouprepresented as follows:

 Name  f  STTnSTnTnS
matrix 0 -1 
 1  0
 1  1 
 0  1
 1  n 
 0  1
 0 -1 
 1  n
 n -1 
 1  0
 f (z)-1/zz+1z+n
-1
vinculum
z+n
n-1/z

The modular group  was first studied in detail, for its own sake,by Richard Dedekind  and Felix Klein  as part of the Erlangen program  (1872). The closely related elliptic functions  (introduced by Lagrange  in 1785) had already been studied quite extensively by Abel(1827-1828)  and Jacobi(1829) who shared  the grand prix  of the French Academy of Sciences  for that work,  in 1830 (after Abel's death).

An interesting source of examples in the modular group is provided bythe successiveconvergents obtained bytruncating the continued fraction expansion of a number, because thefollowing relation is naturally satisfied:

Pn+1 Qn  Qn+1 Pn   =   (-1)n


(2017-07-29)  
Group operator defined on a cubicplanar curve without singular points.

In the Euclidean plane,  a cubic curve without singular points is called an elliptic curve.  That same term is also commonly used to denote the cartesianequation of such a curve or the wonderful group structure its points can be endowed with, as described below.  Elliptic curves can be considered over various fields (complex numbers, rationals,p-adic numbers, finite fields).

 Come back later, we're still working on this one...

Mordell's Theorem  (1922) :

In 1901, Poincaré  had askedwhether the rational points of a curve of genus 1 are finitely generated. 21 years later,Mordell  settled thatfor elliptic curves:

An elliptic-curve's rational points form a finitely-generated abelian group.

For an elliptic curve E,  this is denoted E(Q


 Gerard Michon (2017-08-03)  
Combining a circle and a straight line so the latter is a subgroup.

In the Euclidean plane, let's apply the geometric definition of sums on an elliptic curve to the degenerate cubic consisting of a circle of unit diameter and a straight line at a distance  d  from its center.

When at least one point is on the circle,  the geometric construction of thesum of two points presents no difficulty.  On the other hand, if both of the points A and B are on the line,  their sum  C = A+B is not immediately clear. To construct it,  we may consider any auxiliary point V on the circle and use the followingidentity, involving three sums of the previous kind:

A + B   =   ( (A+V) + B) - V

For convenience,  we choose V on the axis of symmetry of the figure, so that  V = -V,  in which case we have a symmetrical defining relation:

 Group law on a degenerate cubic

A + B   =   (A+V) + (B+V)

If  A'  is the mirror-image of  A+V  (with respect to the horizontal axis of symmetry) then the law introduced in the non-degenerate case  says that A'  is at the intersection of the circle and the AV line.  Likewise, the image  B'  of  B+V  is the intersection of  BV  with the circle. A+B  is on the mirror-image of the line joining  A+V  and  B+V, which is the line A'B'.  So,  A+B  is at the intersection of  A'B' with our basic vertical line,  as shown in the figure at left.

 Come back later, we're still working on this one...

 
w  =    
 
 u + v 
vinculum
1  +  k uv

If we're concerned with number theory,  we choose any rational value for  k. Otherwise,  we remark that the above equation encodes a group structure on the real linein one of three different ways,  modulo some rescaling:

Moreover,  the limiting case when  k  tends to infinity can be construedas ordinary multiplication of the reciprocals of nonzero numbers. Of course, the (nonzero) rational numbers are not finitely generated under this law, because there are infinitely many prime numbers.

More generally,  we may consider any continuous monotonous function f from negative infinity to positive infinity and define an abelian group law over the real numbers by:

x y   =  f ( f -1 (x)  + f -1 (y) )

Our previous discussion is a special case of that if we choose f to be either the trigonometric tangent or the hyperbolic tangent. The former for a line which doesn't intersect the basic circle, the latter for a line which does.


(2017-07-30)  
Introduced by Von Neumann  to discuss the Banach-Tarski paradox.

An amenable group  is a locally compact topological group whose elements leave invariant some kind of averaging on bounded functions.

The English word was coined in 1949 by Mahlon M. Day  as a pun  ("a-mean-able") to translate the German term originally used by Von Neumann in 1929  (messbar = measurable). The French use either the English term or the (better) word moyennable.

 Come back later, we're still working on this one...

 Richard J. Thompson
(2017-07-28)  
F is the smallest of the three nested groups  F,  T  and  V.

The three Thompson groups  F,  T  and  V  are also called vagabond groupschameleon groups  or just chameleons  (the latter term was coined by Matt Brin in1994). They have unusual properties which have made them counterexamples to several conjectures in group theory.

F is not simple  but itsderived group is. T and V are simple. T was the first known example of a  finitely-presented infinitesimple group.

Group F :

F can be defined as the subgroup of the piecewise-linear automorphisms of theinterval  [0,1]  consisting of all functions f such that:

Group T :

Group V :

 Come back later, we're still working on this one...


(2020-01-27) 

 Come back later, we're still working on this one...

Let M be a sandpile for which there's a sandpile Z such that  M+Z = M. Then, Z is a zero  (i.e. it's a neutral element for addition)  overthe set of all sandpiles of the form X+M, since:

(X+M) + Z   =   X + (M+Z)   =   X+M

 Come back later, we're still working on this one...


(2006-03-01) 
Each is isomorphic to the Restricted Lorentz Group  SO+(3,1).

    =  -1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1

The Lorentz Group O(3,1) is isomorphic to SL(2,C)  andconsists of all  4 by 4  real matrices A  such thatA*  A = 1,where is the metric matrix for three dimensionsof space and one dimension of time.

The O(3,1)  group has  4 connected components. Those components are pairwisehomeomorphicand are  not  simply connected :

SO+(3,1)      T[SO+(3,1) ]      P[SO+(3,1) ]      PT[SO+(3,1) ]

SO+(3,1)  is the  (6-dimensional) Restricted Lorentz Group consisting of the elements of the Lorentz Group O(3,1) which preserve the direction of time and the orientation of space (boosts and 3D rotations). In the above, T and P denote a reversal of time and an inversionof space  (the latter could be either a mirror symmetry about a planeor a symmetry about a point).

Poincaré Group :

The Poincaré Group ISO+(3,1)  is the 10-dimensional inhomogeneous  group of noninverting isometriesfor 3 dimensions of space and one dimension of time. It consists of transformations mapping x  to x+a , where   belongs to the above Restricted Lorentz Group SO+(3,1) and a  is some 4-vector.

Wigner's Classification :

 Come back later, we're still working on this one...


(2006-03-21)  
The laws of nature are invariant under a certain group of transformations.

God does arithmetic.
Carl Friedrich Gauss  (1777-1855) 

In spite of their respective successes,General Relativity and theStandard Model are known to be imperfect theories,incompatible with each other. The ultimate laws of physics  (if they exist)  could onlyincorporate those two as approximations applicable to specific experimentaldomains  (like Newtonian mechanics  approximates Special Relativity  for low speeds).

Nobody knows (yet) exactly what symmetries the ultimate laws  of nature should have, but we may ponder the groups of local symmetries underlying modern mathematicaltheories of the  4  known physical interactions:

ForceGroup  Dimension  
ElectromagnetismU(1)1
Weak interactionsSU(2)3
  Strong interactions  SU(3)8
Gravity ISO+(3,1)  10

Maxwell's unificationof electricity and magnetism intoelectromagnetism has been ultimately construed  as the discoverythat electrodynamics is invariant under local phase transformations, with the simple structure of U(1). The classical quantity associated with that symmetry  (by Noether's theorem )  is simply electric charge.

Quantum electrodynamics (QED)  describes electromagnetism as a quantum field. It became the basic paradigm for all subsequent quantum theories of fundamental physical interactions. QED describes how photons  "mediate" the forcebetween electrons  (or any other charged particles).

The electroweak theory  is a satisfying unificationof electromagnetism and weak interactions under the symmetries of the direct product SU(2)U(1). It was devised in 1967 by Steven Weinberg  (1933-) and Abdus Salam  (1926-1996)  building on earlier workof Sheldon Glashow  (1932-).  The three men shared the 1979 Nobel prize for this.  The group SU(2)  is isomorphic to 3-dimensional rotations. The broken  electroweak symmetry translatesinto  4  vector bosons:    (the photon) Z0,  W+  and  W-.

Broken: 

The theory of strong interactions is known as quantum chromodynamics  (QCD). It's based on an unbroken SU(3) local symmetry, dubbed color symmetry  because of a superficial similarity withthe rules ofcolor vision  (whereby3 primary colors may combine to create colorlessness). QCD describes how gluons  mediate the strong force between quarks  (or anything else with color charge,including gluons themselves).  There are 8 differenttypes of gluons, corresponding to the 8 dimensions ofSU(3). In this context, SU(3)  is often denoted SUc(3).  "C" stands forcolor.

As described by  Albert Einstein's General Theory of Relativity, gravity's local symmetry is that of thePoincarégroup, which preserves spacetime intervals, as well as the direction of timeand the orientation of space. The Poincaré group  is 10-dimensional. However, a gauge field (the graviton)  is associated only with the 4 dimensions of spacetimetranslations.  Suspiciously, no such particle or field is associated withthe 6 dimensions corresponding toLorentz symmetries (3 dimensions for spatial rotationsand 3 dimensions forLorentz boosts).

The so-called Standard Model  of particle physicistsdescribes both strong  and electroweak interactions in a theoretical framework whose symmetries are those of the group SU(2)U(1)SUc(3), which has 12 dimensions.

The model depends on several parameters, adjusted tofit experimental data but otherwise unexplained. Different local symmetries would impose different restrictions,for better or for worse. Oneclassical grouppossessing more dimensions of symmetry  (24)  than the Standard Model  is SU(5).

The correct local symmetry of "strong-electroweak"  interactions would still notdetermine the masses of the vector bosons involved (particles ofspin 1)  unlessmore is known about the way such a symmetry is broken.

A key aspect of particle physics which is based on a broken symmetry is theclassification of elementary particles into three generations of flavors.

A mind-boggling supersymmetry  across different spins () seems required of any quantum theory designed to include gravity in a fully unified quantum theory "of everything": Supergravity, Superstrings, etc.

In2010, SirMichael Atiyah (1929-2019) remarked that the known physical symmetries occur naturally in the Tits-Freudenthalmagic square pertaining to associativehypercomplex numbers obtained through the Cayley-Dicksonconstruct.  He speculated that the introduction of thefourth (nonassociative) hypercomplex division algebra  (the octonions)  is somehowrelated to gravity.  He admonished younger investigators to considerthis possibility,  which would give a beautiful role to all exceptional Lie groups.


(2019-03-12)  
QFT's renormalization group  is a subgroupof the cosmic Galois group.

The name cosmic Galois group  was coined by Pierre Cartier  around 1998, as he shared the optimism of Fields medalist Maxim Kontsevich (1964-) in the following words:

The subject caught the attention of several other people connected with the IHES. One comprehensive introduction appears in the work (2004)  of Alain Connes (1947-)  and Matilde Marcolli(1969-).

 Come back later, we're still working on this one...

borderborder
visits since March 5, 2006
 (c) Copyright 2000-2023, Gerard P. Michon, Ph.D.

[8]ページ先頭

©2009-2025 Movatter.jp