Movatterモバイル変換


[0]ホーム

URL:


 border

Connes' Geometry

The use of noncommutative geometry  (NCG)
as a tool for constructing particle physics models
originated in the 1990s.
 Matilde Marcolli  (2017)
 Michon  

Related articles on this site:

Related Links (Outside this Site)

Alain Connes' personal website  |  Wikipedia page
The flashes of insight never came for free. Interview  (December 2010).
 
Very Basic NCG by Masoud Khalkhali  (pdf, 104 pp).
Noncommutative Geometry by Alain Connes  (pdf, 654 pp, 1994).
NCG, Year 2000  by Alain Connes  (67 pp, 2000-11-23).
NCG, the spectral standpoint  by Alain Connes  (56 pp, 2019-10-23).
 
Noncommutative Geometry:  Overview at nLab.
Noncommutative Geometry:  Blog / Forum
What'sthe significance of NCG in mathematicsMathOverflow  (2012-02-11).

Videos :

Noncommutative geometry and particle physics (8:24) by Kevin McSherry  (Radboud University, 2016-04-12).
A rapid tour through NCG (1:02:23) by Nigel Higson  (ESI, 2019-02-26).

Videos in French :

Non-commutativité, moteur du temps (6:46) Etienne Klein  (2014-05-21).
Discours introductif aux travaux d'Alain Connes (19:01) Etienne Klein  (2018).
Géométrie non-commutative  (23:02,15:15)  by J-P. Luminet  (2020-05-09/11).

Videos of Alain Connes :

Non-commutative geometry (53:54) Visions in Mathematics  (1999-08-26).
Interview (1:05:59)  by Stéphane Dugowson  & Anatole Khélif  (2014-02-05).
Face à la réalité mathématique (7:03) Collège de France  (2014).
Quanta of Geometry (1:38:01)  ESI  (2015-03-10).
The Arithmetic Site (59:04,54:14)  ESI  (2015-03-11).
Quantum Emergence of Time (58:37)  at IHES  (2015-04-09).
Pensée en mouvement (French, 1:55:02) Université PSL  (2015-11-12).
Géométrie non-commutative & physique(1:18:17)Guillaume Faye, IAP (2015).
Why 4 dimensions?  QG & NCG (1:54:49)  at IHES  (2017-10-24/27).
Entropy and the spectral action (51:09)  at IHES  (2017-12-24).
Parcours d'un mathématicien (1:25:10)  SAPT  (2018-12-17).
On the Fine-Structure of Space-Time (1:03:36)  at IHES  (2019-02-27).

 
border
border

On Alain Connes' Noncommutative Geometry


(2020-05-12)  

 Come back later, we're still working on this one...


 Von Neumann's coat-of-arms (2020-05-03)  
At first, rings of operators  on Hilbert spaces.

When Dirac  first formalizedquantum theory, he posited that the ultimate state  of reality was a vector belongingto an abstract ad hoc  Hilbert space  called the space of kets  (or, equivalently, the space of the bra  covectors).

However,  a ket isn't directly accessible.  All we can do is apply to it an operator  associated to an observable physical quantity. Doing so transforms the ket into an eigenvector of that operator, whose associated eigenvalue is construed to be the result of a measurement (it's always a real quantity if we only use hermitian operators, henceforth called observables,  for short).

The original motivation was to understand how hermitian operators  (quantum observables) act on a system composed of several subsytems  (call that entanglement  if you must).

C* Algebras  (Gelfand &Naimark,  1943) :

By definition,  a C* algebra  (pronounced "C star")  is a Banach algebra (i.e.,  a Banach space  endowedwith the added structure of an algebra) on which a conjugation  is an involution extending the conjugation on thescalar field  (using the same postfixed star  "*"  notation):

  • X**   =   X     (i.e.,  conjugation is an involution).
  • (k X)*   =   k* X*     X* k*     (antilinearity).
  • (X + Y)*   =   X* + Y*     (additive homomorphism).
  • (X Y)*   =   Y* X*     (multiplicative antihomomorphism).


(2020-05-08)  

A linear operator between normed spaces is continuousiff it's bounded.

A compact operator is a linear operator for which the image ofany bounded subset isprecompact (i.e.,  its closure is compact).

 Come back later, we're still working on this one...


(2020-05-15)  

 Come back later, we're still working on this one...

Connes' Dictionary
SpaceXAlgebraA
Real Variable  xSelf-adjoint Operator
Infinitesimal form  dxCompact Operator 
Integral   =  Coefficient of
Log   in  Tr()
Infinitesimal displacement
(g dxdx ) ½
Fermion propagator  D-1


(2020-05-03)   (1967)
Introduced by Minoru Tomita (1924-2015).

Tomita (1924-2015) had been hearing-impaired since the age of  2  and his theoryremained obscure until it was exposed in a 1970 book based on lecture notes compiled by his student Masamichi Takesaki (1933-).

 

Type III von Neumann Algebras :

 Come back later, we're still working on this one...


(2020-05-04)  

 Come back later, we're still working on this one...


(2020-05-11)  

 Come back later, we're still working on this one...


(2020-05-10)  
By Paul Baum  & Alain Connes  (1982).

 Come back later, we're still working on this one...


(2020-05-14)  

 Come back later, we're still working on this one...


(2020-05-03)  
Prime numbers  and the hyperringofadèle classes.

 Come back later, we're still working on this one...


(2020-06-10)  

 Come back later, we're still working on this one...

border
border
visits since May 3, 2020
 (c) Copyright 2000-2023, Gerard P. Michon, Ph.D.

[8]ページ先頭

©2009-2025 Movatter.jp