Spatial Distribution of Multi-Fractal Scaling Behaviours of Atmospheric XCO2 Concentration Time Series during 2010-2018 over China
- PMID:35741538
- PMCID: PMC9222844
- DOI: 10.3390/e24060817
Spatial Distribution of Multi-Fractal Scaling Behaviours of Atmospheric XCO2 Concentration Time Series during 2010-2018 over China
Abstract
Exploring the spatial distribution of the multi-fractal scaling behaviours in atmospheric CO2 concentration time series is useful for understanding the dynamic mechanisms of carbon emission and absorption. In this work, we utilise a well-established multi-fractal detrended fluctuation analysis to examine the multi-fractal scaling behaviour of a column-averaged dry-air mole fraction of carbon dioxide (XCO2) concentration time series over China, and portray the spatial distribution of the multi-fractal scaling behaviour. As XCO2 data values from the Greenhouse Gases Observing Satellite (GOSAT) are insufficient, a spatio-temporal thin plate spline interpolation method is applied. The results show that XCO2 concentration records over almost all of China exhibit a multi-fractal nature. Two types of multi-fractal sources are detected. One is long-range correlations, and the other is both long-range correlations and a broad probability density function; these are mainly distributed in southern and northern China, respectively. The atmospheric temperature and carbon emission/absorption are two possible external factors influencing the multi-fractality of the atmospheric XCO2 concentration.Highlight: (1) An XCO2 concentration interpolation is conducted using a spatio-temporal thin plate spline method. (2) The spatial distribution of the multi-fractality of XCO2 concentration over China is shown. (3) Multi-fractal sources and two external factors affecting multi-fractality are analysed.
Keywords: atmospheric XCO2 concentration; multi-fractal detrended fluctuation analysis; multi-fractal scaling behaviour; spatial distribution; spatio-temporal thin plate spline interpolation approach.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
- Mapping contiguous XCO2 by machine learning and analyzing the spatio-temporal variation in China from 2003 to 2019.Zhang M, Liu G.Zhang M, et al.Sci Total Environ. 2023 Feb 1;858(Pt 2):159588. doi: 10.1016/j.scitotenv.2022.159588. Epub 2022 Nov 2.Sci Total Environ. 2023.PMID:36334674
- Simulation and analysis of XCO2 in North China based on high accuracy surface modeling.Liu Y, Yue T, Zhang L, Zhao N, Zhao M, Liu Y.Liu Y, et al.Environ Sci Pollut Res Int. 2018 Sep;25(27):27378-27392. doi: 10.1007/s11356-018-2683-x. Epub 2018 Jul 22.Environ Sci Pollut Res Int. 2018.PMID:30033484Free PMC article.
- Reconstructing annual XCO2 at a 1 km×1 km spatial resolution across China from 2012 to 2019 based on a spatial CatBoost method.Wu C, Ju Y, Yang S, Zhang Z, Chen Y.Wu C, et al.Environ Res. 2023 Nov 1;236(Pt 2):116866. doi: 10.1016/j.envres.2023.116866. Epub 2023 Aug 9.Environ Res. 2023.PMID:37567384
- Spatiotemporal variation analysis of global XCO2 concentration during 2010-2020 based on DINEOF-BME framework and wavelet function.Gao Z, Jiang Y, He J, Wu J.Gao Z, et al.Sci Total Environ. 2023 Sep 20;892:164750. doi: 10.1016/j.scitotenv.2023.164750. Epub 2023 Jun 7.Sci Total Environ. 2023.PMID:37295525
- [Fractal theory and its application in the analysis of soil spatial variability: a review].Zhang FS, Liu ZX.Zhang FS, et al.Ying Yong Sheng Tai Xue Bao. 2011 May;22(5):1351-8.Ying Yong Sheng Tai Xue Bao. 2011.PMID:21812316Review.Chinese.
References
- Houghton J.T., Ding Y., Griggs D.J. Climate Change 2001: The Scientific Basis. Cambridge University Press; Cambridge, UK: 2002.
- Canadell J.G., Quere C.L., Raupach M.R., Field C.B., Buitenhuis E.T., Ciais P., Conway T.J., Gillett N.P., Houghton R.A., Marland G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA. 2007;104:18866–18870. doi: 10.1073/pnas.0702737104. - DOI - PMC - PubMed
- Kantelhardt J.W., Zschiegner S.A., Koscienlny-Bunde E., Bunde A., Havlin S., Stanley H.E. Multi-fractal detrended fluctuation analysis of non-stationary time series. Physica A. 2002;316:87–114. doi: 10.1016/S0378-4371(02)01383-3. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials