Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

.2021 Jun 7:1646:462100.
doi: 10.1016/j.chroma.2021.462100. Epub 2021 Mar 25.

Predicting Kováts Retention Indices Using Graph Neural Networks

Affiliations

Predicting Kováts Retention Indices Using Graph Neural Networks

Chen Qu et al. J Chromatogr A..

Abstract

The Kováts retention index is a dimensionless quantity that characterizes the rate at which a compound is processed through a gas chromatography column. This quantity is independent of many experimental variables and, as such, is considered a near-universal descriptor of retention time on a chromatography column. The Kováts retention indices of a large number of molecules have been determined experimentally. The "NIST 20: GC Method/Retention Index Library" database has collected and, more importantly, curated retention indices of a subset of these compounds resulting in a highly valued reference database. The experimental data in the library form an ideal data set for training machine learning models for the prediction of retention indices of unknown compounds. In this article, we describe the training of a graph neural network model to predict the Kováts retention index for compounds in the NIST library and compare this approach with previous work [1]. We predict the Kováts retention index with a mean unsigned error of 28 index units as compared to 44, the putative best result using a convolutional neural network [1]. The NIST library also incorporates an estimation scheme based on a group contribution approach that achieves a mean unsigned error of 114 compared to the experimental data. Our method uses the same input data source as the group contribution approach, making its application straightforward and convenient to apply to existing libraries. Our results convincingly demonstrate the predictive powers of systematic, data-driven approaches leveraging deep learning methodologies applied to chemical data and for the data in the NIST 20 library outperform previous models.

Keywords: Gas chromatography; Graph neural network; Kováts retention index; Machine learning.

Copyright © 2021. Published by Elsevier B.V.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp