Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Share

Meta-Analysis
.2020 Jun;18(2):203-213.
doi: 10.1016/j.ortho.2020.01.011. Epub 2020 Feb 20.

An in vitro evaluation of the effects of nanoparticles on shear bond strength and antimicrobial properties of orthodontic adhesives: A systematic review and meta-analysis study

Affiliations
Meta-Analysis

An in vitro evaluation of the effects of nanoparticles on shear bond strength and antimicrobial properties of orthodontic adhesives: A systematic review and meta-analysis study

Maryam Pourhajibagher et al. Int Orthod.2020 Jun.

Abstract

Introduction: Biofilm accumulation around orthodontic brackets and composite is a common complication of orthodontic treatment.

Objective: A systematic review and meta-analysis were done to find out whether the association of nanoparticles with the orthodontic adhesives compromises its properties and whether there are exceptional nanoparticles exhibiting excellent antimicrobial potential against cariogenic bacteria along with remarkable mechanical properties.

Materials and methods: Electronic databases were searched using the following keywords; orthodontic or orthodontics and antimicrobial or antibacterial and adhesive and nanoparticles and shear bond strength. Thirteen studies were included and meta-analysis was performed.

Results: The results indicated no drastic changes in mechanical properties (0.812, 95% CI [0.750, 0.861], P=0.000). The Ag-HA, Cur, Cur-ZnO, and TiO2 in concentration≥1% showed a statistically significant difference, where the control groups had higher shear bond strength. Nine studies assessed the antimicrobial properties of nanoparticles. 1 wt% Cu and 5 wt% TiO2 not only did not affect shear bond strength but also showed more antimicrobial activity against Streptococcus mutans. The analysis demonstrated the absence of heterogeneity (Q value=44.014; df (Q)=12; and I2=72.736) in shear bond strength of orthodontic adhesives with nanoparticles, with low risk of bias.

Conclusions: Adding≤5 wt% antimicrobial nanoparticles to an orthodontic adhesive is less conducive to microbial growth than unmodified adhesive and does not influence bracket-enamel bond strength.

Keywords: Antimicrobial nanoparticles; Bracket; Meta-analysis; Orthodontic adhesives; Shear bond strength; Streptococcus mutans.

Copyright © 2020 CEO. Published by Elsevier Masson SAS. All rights reserved.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp