Retrieval of Winter Wheat Leaf Area Index from Chinese GF-1 Satellite Data Using the PROSAIL Model
- PMID:29642395
- PMCID: PMC5948798
- DOI: 10.3390/s18041120
Retrieval of Winter Wheat Leaf Area Index from Chinese GF-1 Satellite Data Using the PROSAIL Model
Abstract
Leaf area index (LAI) is one of the key biophysical parameters in crop structure. The accurate quantitative estimation of crop LAI is essential to verify crop growth and health. The PROSAIL radiative transfer model (RTM) is one of the most established methods for estimating crop LAI. In this study, a look-up table (LUT) based on the PROSAIL RTM was first used to estimate winter wheat LAI from GF-1 data, which accounted for some available prior knowledge relating to the distribution of winter wheat characteristics. Next, the effects of 15 LAI-LUT strategies with reflectance bands and 10 LAI-LUT strategies with vegetation indexes on the accuracy of the winter wheat LAI retrieval with different phenological stages were evaluated against in situ LAI measurements. The results showed that the LUT strategies of LAI-GNDVI were optimal and had the highest accuracy with a root mean squared error (RMSE) value of 0.34, and a coefficient of determination (R²) of 0.61 during the elongation stages, and the LUT strategies of LAI-Green were optimal with a RMSE of 0.74, and R² of 0.20 during the grain-filling stages. The results demonstrated that the PROSAIL RTM had great potential in winter wheat LAI inversion with GF-1 satellite data and the performance could be improved by selecting the appropriate LUT inversion strategies in different growth periods.
Keywords: GF-1; PROSAIL; leaf area index; look-up table; winter wheat.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
- Estimation of Multi-Species Leaf Area Index Based on Chinese GF-1 Satellite Data Using Look-Up Table and Gaussian Process Regression Methods.Zhang Y, Yang J, Liu X, Du L, Shi S, Sun J, Chen B.Zhang Y, et al.Sensors (Basel). 2020 Apr 26;20(9):2460. doi: 10.3390/s20092460.Sensors (Basel). 2020.PMID:32357470Free PMC article.
- [Inversion of leaf area index during different growth stages in winter wheat].Zhao J, Huang WJ, Zhang YH, Jing YS.Zhao J, et al.Guang Pu Xue Yu Guang Pu Fen Xi. 2013 Sep;33(9):2546-52.Guang Pu Xue Yu Guang Pu Fen Xi. 2013.PMID:24369669Chinese.
- [Tasseled cap triangle (TCT)-leaf area index (LAI)model of rice fields based on PROSAIL model and its application].Li YN, Lu L, Liu Y.Li YN, et al.Ying Yong Sheng Tai Xue Bao. 2017 Dec;28(12):3976-3984. doi: 10.13287/j.1001-9332.201712.016.Ying Yong Sheng Tai Xue Bao. 2017.PMID:29696893Chinese.
- [LAI-based regional winter wheat yield estimation by remote sensing].Ren JQ, Chen ZX, Zhou QB, Tang HJ.Ren JQ, et al.Ying Yong Sheng Tai Xue Bao. 2010 Nov;21(11):2883-8.Ying Yong Sheng Tai Xue Bao. 2010.PMID:21361014Chinese.
- [Progress in leaf area index retrieval based on hyperspectral remote sensing and retrieval models].Zhang JH, Du YZ, Liu XF, He ZM, Yang LM.Zhang JH, et al.Guang Pu Xue Yu Guang Pu Fen Xi. 2012 Dec;32(12):3319-23.Guang Pu Xue Yu Guang Pu Fen Xi. 2012.PMID:23427560Review.Chinese.
Cited by
- Unsupervised Plot-Scale LAI Phenotyping via UAV-Based Imaging, Modelling, and Machine Learning.Chen Q, Zheng B, Chenu K, Hu P, Chapman SC.Chen Q, et al.Plant Phenomics. 2022 Jul 2;2022:9768253. doi: 10.34133/2022/9768253. eCollection 2022.Plant Phenomics. 2022.PMID:35935677Free PMC article.
- A fast Fourier convolutional deep neural network for accurate and explainable discrimination of wheat yellow rust and nitrogen deficiency from Sentinel-2 time series data.Shi Y, Han L, González-Moreno P, Dancey D, Huang W, Zhang Z, Liu Y, Huang M, Miao H, Dai M.Shi Y, et al.Front Plant Sci. 2023 Oct 4;14:1250844. doi: 10.3389/fpls.2023.1250844. eCollection 2023.Front Plant Sci. 2023.PMID:37860254Free PMC article.
- The Optimal Image Date Selection for Evaluating Cultivated Land Quality Based on Gaofen-1 Images.Xia Z, Peng Y, Liu S, Liu Z, Wang G, Zhu AX, Hu Y.Xia Z, et al.Sensors (Basel). 2019 Nov 13;19(22):4937. doi: 10.3390/s19224937.Sensors (Basel). 2019.PMID:31766165Free PMC article.
- Analyzing the Effects of Hyperspectral ZhuHai-1 Band Combinations on LAI Estimation Based on the PROSAIL Model.Zhang Y, Yang J, Du L.Zhang Y, et al.Sensors (Basel). 2021 Mar 7;21(5):1869. doi: 10.3390/s21051869.Sensors (Basel). 2021.PMID:33800103Free PMC article.
- The fusion of vegetation indices increases the accuracy of cotton leaf area prediction.Fan X, Gao P, Zhang M, Cang H, Zhang L, Zhang Z, Wang J, Lv X, Zhang Q, Ma L.Fan X, et al.Front Plant Sci. 2024 Jul 4;15:1357193. doi: 10.3389/fpls.2024.1357193. eCollection 2024.Front Plant Sci. 2024.PMID:39104844Free PMC article.
References
- Chen J.M., Black T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992;15:421–429. doi: 10.1111/j.1365-3040.1992.tb00992.x. - DOI
- Campos-Taberner M., García-Haro F.J., Camps-Valls G., Grau-Muedra G., Nutini F., Crema A., Boschetti M. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring. Remote Sens. Environ. 2016;187:102–118. doi: 10.1016/j.rse.2016.10.009. - DOI
- Soudani K., François C., le Maire G., Le Dantec V., Dufrêne E. Comparative analysis of ikonos, spot, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sens. Environ. 2006;102:161–175. doi: 10.1016/j.rse.2006.02.004. - DOI
- Nguy-Robertson A.L., Peng Y., Gitelson A.A., Arkebauer T.J., Pimstein A., Herrmann I., Karnieli A., Rundquist D.C., Bonfil D.J. Estimating green lai in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014;192–193:140–148. doi: 10.1016/j.agrformet.2014.03.004. - DOI
- Jay S., Maupas F., Bendoula R., Gorretta N. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and prosail inversion for field phenotyping. Field Crop. Res. 2017;210:33–46. doi: 10.1016/j.fcr.2017.05.005. - DOI
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources