Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Atypon full text link Atypon
Full text links

Actions

Share

Meta-Analysis
.2018 Jun;45(2):79-93.
doi: 10.1080/14653125.2018.1443872. Epub 2018 Mar 5.

Efficacy of antimicrobial agents incorporated in orthodontic bonding systems: a systematic review and meta-analysis

Affiliations
Meta-Analysis

Efficacy of antimicrobial agents incorporated in orthodontic bonding systems: a systematic review and meta-analysis

C M de Almeida et al. J Orthod.2018 Jun.

Abstract

Aims: The purpose of this study was to evaluate the efficacy of orthodontic bonding systems containing different antimicrobial agents, as well as the influence of antimicrobial agent incorporation in the bonding properties of these materials.

Methods: Eight databases were searched: PubMed (Medline), Web of Science, Scopus, Lilacs, Ibecs, BBO, Scielo and Google Scholar. Any study that evaluated antimicrobial activity in experimental or commercial orthodontic bonding systems was included.

Data extraction: Data were tabulated independently and in duplicated by two authors on pre-designed data collection form.

Data synthesis: The global analysis was carried out using a random-effects model, and pooled-effect estimates were obtained by comparing the standardised mean difference of each antimicrobial orthodontic adhesive with the respective control group. A p-value < .05 was considered as statistically significant.

Results: Thirty-two studies were included in the qualitative analysis; of these, 22 studies were included in the meta-analysis. Antimicrobial agents such as silver nanoparticles, benzalkonium chloride, chlorhexidine, triclosan, cetylpyridinium chloride, Galla chinensis extract, acid ursolic, dimethylaminododecyl methacrylate, dimethylaminohexadecyl methacrylate, 2-methacryloyloxyethyl phosphorylcholine, 1,3,5-triacryloylhexahydro-1,3,5-triazine, zinc oxide and titanium oxide have been incorporated into orthodontic bonding systems. The antimicrobial agent incorporation in orthodontic bonding systems showed higher antimicrobial activity than the control group in agar diffusion (overall standardised mean difference: 3.71; 95% CI 2.98 to 4.43) and optical density tests (0.41; 95% CI -0.05 to 0.86) (p < .05). However, for biofilm, the materials did not present antimicrobial activity (6.78; 95% CI 4.78 to 8.77). Regarding bond strength, the global analysis showed antimicrobial orthodontic bonding systems were statistically similar to the control.

Conclusions: Although there is evidence of antibacterial activity from in vitro studies, clinical and long-term studies are still necessary to confirm the effectiveness of antibacterial orthodontic bonding systems in preventing caries disease.

Keywords: Antibacterial effects; dental adhesive; systematic review.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Atypon full text link Atypon
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp