AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes
- PMID:26944679
- PMCID: PMC4782048
- DOI: 10.1101/gad.274142.115
AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes
Abstract
Faithful execution of developmental programs relies on the acquisition of unique cell identities from pluripotent progenitors, a process governed by combinatorial inputs from numerous signaling cascades that ultimately dictate lineage-specific transcriptional outputs. Despite growing evidence that metabolism is integrated with many molecular networks, how pathways that control energy homeostasis may affect cell fate decisions is largely unknown. Here, we show that AMP-activated protein kinase (AMPK), a central metabolic regulator, plays critical roles in lineage specification. Although AMPK-deficient embryonic stem cells (ESCs) were normal in the pluripotent state, these cells displayed profound defects upon differentiation, failing to generate chimeric embryos and preferentially adopting an ectodermal fate at the expense of the endoderm during embryoid body (EB) formation. AMPK(-/-) EBs exhibited reduced levels of Tfeb, a master transcriptional regulator of lysosomes, leading to diminished endolysosomal function. Remarkably, genetic loss of Tfeb also yielded endodermal defects, while AMPK-null ESCs overexpressing this transcription factor normalized their differential potential, revealing an intimate connection between Tfeb/lysosomes and germ layer specification. The compromised endolysosomal system resulting from AMPK or Tfeb inactivation blunted Wnt signaling, while up-regulating this pathway restored expression of endodermal markers. Collectively, these results uncover the AMPK pathway as a novel regulator of cell fate determination during differentiation.
Keywords: AMPK; Tfeb; Wnt; embryonic stem cells; endoderm; germ layer specification; lysosomes.
© 2016 Young et al.; Published by Cold Spring Harbor Laboratory Press.
Figures







Similar articles
- AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3.Paquette M, El-Houjeiri L, C Zirden L, Puustinen P, Blanchette P, Jeong H, Dejgaard K, Siegel PM, Pause A.Paquette M, et al.Autophagy. 2021 Dec;17(12):3957-3975. doi: 10.1080/15548627.2021.1898748. Epub 2021 Mar 18.Autophagy. 2021.PMID:33734022Free PMC article.
- The Transcription Factor EB (TFEB) Regulates Osteoblast Differentiation Through ATF4/CHOP-Dependent Pathway.Yoneshima E, Okamoto K, Sakai E, Nishishita K, Yoshida N, Tsukuba T.Yoneshima E, et al.J Cell Physiol. 2016 Jun;231(6):1321-33. doi: 10.1002/jcp.25235. Epub 2015 Nov 20.J Cell Physiol. 2016.PMID:26519689
- TFEB regulates pluripotency transcriptional network in mouse embryonic stem cells independent of autophagy-lysosomal biogenesis.Tan A, Prasad R, Jho EH.Tan A, et al.Cell Death Dis. 2021 Apr 1;12(4):343. doi: 10.1038/s41419-021-03632-9.Cell Death Dis. 2021.PMID:33795648Free PMC article.
- Transcription Factor EB-Mediated Lysosomal Function Regulation for Determining Stem Cell Fate under Metabolic Stress.Chae CW, Jung YH, Han HJ.Chae CW, et al.Mol Cells. 2023 Dec 31;46(12):727-735. doi: 10.14348/molcells.2023.0143. Epub 2023 Dec 4.Mol Cells. 2023.PMID:38052487Free PMC article.Review.
- TFEB at a glance.Napolitano G, Ballabio A.Napolitano G, et al.J Cell Sci. 2016 Jul 1;129(13):2475-81. doi: 10.1242/jcs.146365. Epub 2016 Jun 1.J Cell Sci. 2016.PMID:27252382Free PMC article.Review.
Cited by
- Lysosomes at the Crossroads of Cell Metabolism, Cell Cycle, and Stemness.Nowosad A, Besson A.Nowosad A, et al.Int J Mol Sci. 2022 Feb 18;23(4):2290. doi: 10.3390/ijms23042290.Int J Mol Sci. 2022.PMID:35216401Free PMC article.Review.
- Cardiomyocyte-specific knockout of ADAM17 ameliorates left ventricular remodeling and function in diabetic cardiomyopathy of mice.Xue F, Cheng J, Liu Y, Cheng C, Zhang M, Sui W, Chen W, Hao P, Zhang Y, Zhang C.Xue F, et al.Signal Transduct Target Ther. 2022 Aug 1;7(1):259. doi: 10.1038/s41392-022-01054-3.Signal Transduct Target Ther. 2022.PMID:35909160Free PMC article.
- Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis.Fernandez-Mosquera L, Yambire KF, Couto R, Pereyra L, Pabis K, Ponsford AH, Diogo CV, Stagi M, Milosevic I, Raimundo N.Fernandez-Mosquera L, et al.Autophagy. 2019 Sep;15(9):1572-1591. doi: 10.1080/15548627.2019.1586256. Epub 2019 Mar 27.Autophagy. 2019.PMID:30917721Free PMC article.
- Multifaceted activities of transcription factor EB in cancer onset and progression.Astanina E, Bussolino F, Doronzo G.Astanina E, et al.Mol Oncol. 2021 Feb;15(2):327-346. doi: 10.1002/1878-0261.12867. Epub 2020 Dec 23.Mol Oncol. 2021.PMID:33252196Free PMC article.Review.
- Foam Cell Induction Activates AMPK But Uncouples Its Regulation of Autophagy and Lysosomal Homeostasis.LeBlond ND, Nunes JRC, Smith TKT, O'Dwyer C, Robichaud S, Gadde S, Côté M, Kemp BE, Ouimet M, Fullerton MD.LeBlond ND, et al.Int J Mol Sci. 2020 Nov 27;21(23):9033. doi: 10.3390/ijms21239033.Int J Mol Sci. 2020.PMID:33261140Free PMC article.
References
- Aoyama M, Sun-Wada GH, Yamamoto A, Yamamoto M, Hamada H, Wada Y. 2012. Spatial restriction of bone morphogenetic protein signaling in mouse gastrula through the mVam2-dependent endocytic pathway. Dev Cell 22: 1163–1175. - PubMed
- Bossard P, Zaret KS. 1998. GATA transcription factors as potentiators of gut endoderm differentiation. Development 125: 4909–4917. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials