Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

HighWire full text link HighWire Free PMC article
Full text links

Actions

Share

.2014 Aug;51(8):518-25.
doi: 10.1136/jmedgenet-2014-102351. Epub 2014 Jun 2.

SLC39A5 mutations interfering with the BMP/TGF-β pathway in non-syndromic high myopia

Affiliations
Free PMC article

SLC39A5 mutations interfering with the BMP/TGF-β pathway in non-syndromic high myopia

Hui Guo et al. J Med Genet.2014 Aug.
Free PMC article

Abstract

Background: High myopia, with the characteristic feature of refractive error, is one of the leading causes of blindness worldwide. It has a high heritability, but only a few causative genes have been identified and the pathogenesis is still unclear.

Methods: We used whole genome linkage and exome sequencing to identify the causative mutation in a non-syndromic high myopia family. Direct Sanger sequencing was used to screen the candidate gene in additional sporadic cases or probands. Immunofluorescence was used to evaluate the expression pattern of the candidate gene in the whole process of eye development. Real-time quantitative PCR and immunoblot was used to investigate the functional consequence of the disease-associated mutations.

Results: We identified a nonsense mutation (c.141C>G:p.Y47*) in SLC39A5 co-segregating with the phenotype in a non-syndromic severe high myopia family. The same nonsense mutation (c.141C>G:p.Y47*) was detected in a sporadic case and a missense mutation (c.911T>C:p.M304T) was identified and co-segregated in another family by screening additional cases. Both disease-associated mutations were not found in 1276 control individuals. SLC39A5 was abundantly expressed in the sclera and retina across different stages of eye development. Furthermore, we found that wild-type, but not disease-associated SLC39A5 inhibited the expression of Smadl, a key phosphate protein in the downstream of the BMP/TGF-β (bone morphogenic protein/transforming growth factor-β) pathway.

Conclusions: Our study reveals that loss-of-function mutations of SLC39A5 are associated with the autosome dominant non-syndromic high myopia, and interference with the BMP/TGF-β pathway may be one of the molecular mechanisms for high myopia.

Keywords: Genetics; Genome-wide; Linkage; Myopia.

Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Identification ofSLC39A5 mutations in high myopia patients. (A) The pedigree plot for HM-FR3: solid symbols represent affected individuals. M numbers denote individuals whose DNA samples were analysed. The nonsense mutation (Y47X) identified by whole genome linkage and exome sequencing segregated with the phenotype exactly. (B) Fundus photograph for the proband of HM-FR3 (M16346) appeared tigroid and had focal atrophy of the choroid. OD represents right eye and OS represents left eye. (C) Multi-point parametric linkage analysis shows four regions with LOD score more than 1 on chromosome 2, 10, and 12, respectively, and other eight low peaks with maximum LOD score no more than 0.5. (D) The pedigree plot for family HM-ZZ19 with the missense mutation (M304T) ofSLC39A5. (E) Schematic of human SLC39A5 protein structure and mutational locations: the nonsense mutation occurred at the 47th amino acid and is located in the amino-terminal domain; the missense mutation is located at the terminal of the third transmembrane domain.
Figure 2
Figure 2
Slc39a5 is expressed in all stages of developing mouse eye, mainly in the sclera and retina. (A) Immunofluorescent labelling of Slc39a5 at different developing stages of normal mouse eye. The localisation of Slc39a5 is shown by the green colour, and the blue colour indicates the nuclei that were stained with DAPI. We selected four developing stages of normal mouse, E10, P0, P13, and adult. Slc39a5 is abundantly expressed at different developing stages of the eye. (B) The enlargement of the retina and sclera from labelled adult mouse eye. Slc39a5 is abundantly expressed at the sclera and different layers of the retina. The following abbreviations represent the retinal layers: NFL, nerve fibre layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; IS, inner segment; OS, outer segment ; PRL, photo receptor layer; and RPE, retinal pigment epithelium.
Figure 3
Figure 3
Disease-associated mutations ofSLC39A5 failed to suppress Smad1 expression. (A, B) Real-time quantitative PCR and immunoblot analysis showed a pronounced increase of both mRNA (A) and protein (B) expression level of Smad1 in two affected individuals (M16346 and M16350) as compared to controls. (C) Immunoblot analysis showed that wild-type SLC39A5 suppressed Smad1 expression; however, both disease-associated mutations notably up-regulated Smad1expression in transduced HEK293 cell lines. (D, E). Immunoblot analysis showed that SLC39A5 shRNAs (SH1, SH2, SH3) (D) notably attenuated the suppressive effect of wild-type SLC39A5 on Smad1 expression (E).
See this image and copyright information in PMC

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. He M, Zheng Y, Xiang F. Prevalence of myopia in urban and rural children in mainland China. Optom Vis Sci 2009;86:40–4 - PubMed
    1. Sawada A, Tomidokoro A, Araie M, Iwase A, Yamamoto T; Tajimi Study G. Refractive errors in an elderly Japanese population: the Tajimi study. Ophthalmology 2008;115:363–70 - PubMed
    1. Woo WW, Lim KA, Yang H, Lim XY, Liew F, Lee YS, Saw SM. Refractive errors in medical students in Singapore. Singapore Med J 2004;45:470–4 - PubMed
    1. Wong TY, Foster PJ, Hee J, Ng TP, Tielsch JM, Chew SJ, Johnson GJ, Seah SK. Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Invest Ophthalmol Vis Sci 2000;41:2486–94 - PubMed
    1. Lyhne N, Sjolie AK, Kyvik KO, Green A. The importance of genes and environment for ocular refraction and its determiners: a population based study among 20–45 year old twins. Br J Ophthalmol 2001;85:1470–6 - PMC - PubMed

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
HighWire full text link HighWire Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp