Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Public Library of Science full text link Public Library of Science Free PMC article
Full text links

Actions

Share

.2013;9(7):e1003117.
doi: 10.1371/journal.pcbi.1003117. Epub 2013 Jul 25.

'HypothesisFinder:' a strategy for the detection of speculative statements in scientific text

Affiliations

'HypothesisFinder:' a strategy for the detection of speculative statements in scientific text

Ashutosh Malhotra et al. PLoS Comput Biol.2013.

Abstract

Speculative statements communicating experimental findings are frequently found in scientific articles, and their purpose is to provide an impetus for further investigations into the given topic. Automated recognition of speculative statements in scientific text has gained interest in recent years as systematic analysis of such statements could transform speculative thoughts into testable hypotheses. We describe here a pattern matching approach for the detection of speculative statements in scientific text that uses a dictionary of speculative patterns to classify sentences as hypothetical. To demonstrate the practical utility of our approach, we applied it to the domain of Alzheimer's disease and showed that our automated approach captures a wide spectrum of scientific speculations on Alzheimer's disease. Subsequent exploration of derived hypothetical knowledge leads to generation of a coherent overview on emerging knowledge niches, and can thus provide added value to ongoing research activities.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. An overview of HypothesisFinder development approach.
The workflow for the development of HypothesisFinder shows how the model was trained, optimized and on what data sets its performance was evaluated.
Figure 2
Figure 2. Classification of speculative patterns.
Figure presents examples of strong, moderate and weak speculative patterns along with their estimated ‘percent efficacy’ or ability of pattern to cast a sentence as speculative.
Figure 3
Figure 3. Example showing usage of HypothesisFinder integrated in SCAIView for extracting hypotheses related to Alzheimer's disease.
Figure shows how HypothesisFinder is used within SCAIView in conjugation with other pre-indexed terminologies and ontologies to retrieve Alzheimer-specific hypotheses. Presented example shows how a hypothesis positioning Tau and Amyloid-beta as potential biomarker candidates in relation to AD is identified by HypothesisFinder in scientific abstracts.
Figure 4
Figure 4. Comparison of information densities: HypothesisFinder vs.
AlzSWAN. A- The statistical comparison between the numbers of hypotheses related to AD captured by HypothesisFinder within SCAIView (stage-specific retrieval) and the hypotheses with extended annotation derived from citations mentioned in the AlzSWAN database. B- A comparison between biological entity retrieval using SCAIView and relevant entries in AlzSWAN.
Figure 5
Figure 5. Chronological order of hypotheses proposed in Mild (A), Moderate (B) and Severe (C) AD.
Figure shows a schematic representation of how AD stage specific hypothesis related to top five genes that are high-frequently investigated in the literature has evolved in number over time Abbreviations mentioned stands for Amyloid beta (A4) precursor protein (APP), Apolipoprotein E (APOE), Microtubule- associated protein tau (MAPT), Choline O-acetyltransferase (CHAT), Brain-derived neurotrophic factor (BDNF), Beta-site APP-cleaving enzyme 1(BACE 1), Galanin prepropedtide (GAL).
Figure 6
Figure 6. Stage specific AD networks.
Figure presents protein interaction networks for Mild(A), Moderate(B), Severe(C) stage of Alzheimer's disease. These stage specific networks have been generated by using BioNetBuilder plugin in Cytoscape, which was given genes and proteins, associated to stage-wise hypotheses as input.
See this image and copyright information in PMC

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Medlock B (2008) Exploring hedge identification in biomedical literature. Journal of biomedical informatics 41: 636–654. - PubMed
    1. Zhang S, Zhao H, Zhou G, Lu B (2010) Exploiting rich syntactic features for hedge detection and scope finding. Proceedings of the Fourteenth Conference on Computational Natural Language Learning 2010: 92–99.
    1. Light M, Qiu XY, Srinivasan P (2004) The language of bioscience: facts, speculations and statements in between. BioLINK 2004: Linking Biological Literature, Ontologies and Databases 2004: 17–24.
    1. Medlock B, Briscoe T (2007) Weakly supervised learning for hedge classification in scientific literature. Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics 2007: 992–999.
    1. Szarvas G (2008) Hedge classification in biomedical texts with a weakly supervised selection of keywords. Proceedings of 46th Meeting of the Association for Computational Linguistics 2008: 281–289.

Publication types

MeSH terms

Related information

Grants and funding

This work was supported by the B-IT foundation (http://www.b-it-center.de/) and a scholarship to AM (Scholarship PLUS program of the State of NorthRhine Westphalia). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

LinkOut - more resources

Full text links
Public Library of Science full text link Public Library of Science Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp