High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints
- PMID:22912568
- PMCID: PMC3415389
- DOI: 10.1371/journal.pcbi.1002638
High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints
Abstract
An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM). GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the implementation of combinatorial control.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures








Similar articles
- MACE: model based analysis of ChIP-exo.Wang L, Chen J, Wang C, Uusküla-Reimand L, Chen K, Medina-Rivera A, Young EJ, Zimmermann MT, Yan H, Sun Z, Zhang Y, Wu ST, Huang H, Wilson MD, Kocher JP, Li W.Wang L, et al.Nucleic Acids Res. 2014 Nov 10;42(20):e156. doi: 10.1093/nar/gku846. Epub 2014 Sep 23.Nucleic Acids Res. 2014.PMID:25249628Free PMC article.
- Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.Mundade R, Ozer HG, Wei H, Prabhu L, Lu T.Mundade R, et al.Cell Cycle. 2014;13(18):2847-52. doi: 10.4161/15384101.2014.949201.Cell Cycle. 2014.PMID:25486472Free PMC article.Review.
- Discovering unknown human and mouse transcription factor binding sites and their characteristics from ChIP-seq data.Yu CP, Kuo CH, Nelson CW, Chen CA, Soh ZT, Lin JJ, Hsiao RX, Chang CY, Li WH.Yu CP, et al.Proc Natl Acad Sci U S A. 2021 May 18;118(20):e2026754118. doi: 10.1073/pnas.2026754118.Proc Natl Acad Sci U S A. 2021.PMID:33975951Free PMC article.
- Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data.Jothi R, Cuddapah S, Barski A, Cui K, Zhao K.Jothi R, et al.Nucleic Acids Res. 2008 Sep;36(16):5221-31. doi: 10.1093/nar/gkn488. Epub 2008 Aug 6.Nucleic Acids Res. 2008.PMID:18684996Free PMC article.
- Genome Wide Approaches to Identify Protein-DNA Interactions.Ma T, Ye Z, Wang L.Ma T, et al.Curr Med Chem. 2019;26(42):7641-7654. doi: 10.2174/0929867325666180530115711.Curr Med Chem. 2019.PMID:29848263Review.
Cited by
- Paternal imprinting of dosage-effect defective1 contributes to seed weight xenia in maize.Dai D, Mudunkothge JS, Galli M, Char SN, Davenport R, Zhou X, Gustin JL, Spielbauer G, Zhang J, Barbazuk WB, Yang B, Gallavotti A, Settles AM.Dai D, et al.Nat Commun. 2022 Sep 13;13(1):5366. doi: 10.1038/s41467-022-33055-9.Nat Commun. 2022.PMID:36100609Free PMC article.
- A heterochromatin inducing protein differentially recognizes self versus foreign genomes.Burton EM, Akinyemi IA, Frey TR, Xu H, Li X, Su LJ, Zhi J, McIntosh MT, Bhaduri-McIntosh S.Burton EM, et al.PLoS Pathog. 2021 Mar 17;17(3):e1009447. doi: 10.1371/journal.ppat.1009447. eCollection 2021 Mar.PLoS Pathog. 2021.PMID:33730092Free PMC article.
- PHYTOCHROME-INTERACTING FACTORs trigger environmentally responsive chromatin dynamics in plants.Willige BC, Zander M, Yoo CY, Phan A, Garza RM, Wanamaker SA, He Y, Nery JR, Chen H, Chen M, Ecker JR, Chory J.Willige BC, et al.Nat Genet. 2021 Jul;53(7):955-961. doi: 10.1038/s41588-021-00882-3. Epub 2021 Jun 17.Nat Genet. 2021.PMID:34140685Free PMC article.
- Accessible gene borders establish a core structural unit for chromatin architecture in Arabidopsis.Lee H, Seo PJ.Lee H, et al.Nucleic Acids Res. 2023 Oct 27;51(19):10261-10277. doi: 10.1093/nar/gkad710.Nucleic Acids Res. 2023.PMID:37884483Free PMC article.
- Quality control and evaluation of plant epigenomics data.Schmitz RJ, Marand AP, Zhang X, Mosher RA, Turck F, Chen X, Axtell MJ, Zhong X, Brady SM, Megraw M, Meyers BC.Schmitz RJ, et al.Plant Cell. 2022 Jan 20;34(1):503-513. doi: 10.1093/plcell/koab255.Plant Cell. 2022.PMID:34648025Free PMC article.
References
- Wolberger C (1999) Multiprotein-DNA complexes in transcriptional regulation. Annu Rev Biophys Biomol Struct 28: 29–56 doi:10.1146/annurev.biophys.28.1.29. - DOI - PubMed
- Ponticos M, Partridge T, Black CM, Abraham DJ, Bou-Gharios G (2004) Regulation of collagen type I in vascular smooth muscle cells by competition between Nkx2.5 and deltaEF1/ZEB1. Mol Cell Biol 24: 6151–6161 doi:10.1128/MCB.24.14.6151-6161.2004. - DOI - PMC - PubMed
- Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10: 605–616 doi:10.1038/nrg2636. - DOI - PMC - PubMed
- Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: R137 doi:10.1186/gb-2008-9-9-r137. - DOI - PMC - PubMed
- Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, et al. (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5: 829–834 doi:10.1038/nmeth.1246. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous