Random forests for genomic data analysis
- PMID:22546560
- PMCID: PMC3387489
- DOI: 10.1016/j.ygeno.2012.04.003
Random forests for genomic data analysis
Abstract
Random forests (RF) is a popular tree-based ensemble machine learning tool that is highly data adaptive, applies to "large p, small n" problems, and is able to account for correlation as well as interactions among features. This makes RF particularly appealing for high-dimensional genomic data analysis. In this article, we systematically review the applications and recent progresses of RF for genomic data, including prediction and classification, variable selection, pathway analysis, genetic association and epistasis detection, and unsupervised learning.
Copyright © 2012 Elsevier Inc. All rights reserved.
Similar articles
- Enabling Systemic Identification and Functionality Profiling for Cdc42 Homeostatic Modulators.Malasala S, Azimian F, Chen YH, Twiss JL, Boykin C, Akhtar SN, Lu Q.Malasala S, et al.bioRxiv [Preprint]. 2024 Jan 8:2024.01.05.574351. doi: 10.1101/2024.01.05.574351.bioRxiv. 2024.Update in:Commun Chem. 2024 Nov 19;7(1):271. doi: 10.1038/s42004-024-01352-7.PMID:38260445Free PMC article.Updated.Preprint.
- Antioxidants for female subfertility.Showell MG, Mackenzie-Proctor R, Jordan V, Hart RJ.Showell MG, et al.Cochrane Database Syst Rev. 2020 Aug 27;8(8):CD007807. doi: 10.1002/14651858.CD007807.pub4.Cochrane Database Syst Rev. 2020.PMID:32851663Free PMC article.
- Genedrive kit for detecting single nucleotide polymorphism m.1555A>G in neonates and their mothers: a systematic review and cost-effectiveness analysis.Shabaninejad H, Kenny RP, Robinson T, Stoniute A, O'Keefe H, Still M, Thornton C, Pearson F, Beyer F, Meader N.Shabaninejad H, et al.Health Technol Assess. 2024 Oct;28(75):1-75. doi: 10.3310/TGAC4201.Health Technol Assess. 2024.PMID:39487741Free PMC article.
- Antioxidants for female subfertility.Showell MG, Mackenzie-Proctor R, Jordan V, Hart RJ.Showell MG, et al.Cochrane Database Syst Rev. 2017 Jul 28;7(7):CD007807. doi: 10.1002/14651858.CD007807.pub3.Cochrane Database Syst Rev. 2017.Update in:Cochrane Database Syst Rev. 2020 Aug 27;8:CD007807. doi: 10.1002/14651858.CD007807.pub4.PMID:28752910Free PMC article.Updated.Review.
- Metformin for endometrial hyperplasia.Shiwani H, Clement NS, Daniels JP, Atiomo W.Shiwani H, et al.Cochrane Database Syst Rev. 2024 May 2;5(5):CD012214. doi: 10.1002/14651858.CD012214.pub3.Cochrane Database Syst Rev. 2024.PMID:38695827Free PMC article.Review.
Cited by
- Gut-resident microorganisms and their genes are associated with cognition and neuroanatomy in children.Bonham KS, Fahur Bottino G, McCann SH, Beauchemin J, Weisse E, Barry F, Cano Lorente R; RESONANCE Consortium; Huttenhower C, Bruchhage M, D'Sa V, Deoni S, Klepac-Ceraj V.Bonham KS, et al.Sci Adv. 2023 Dec 22;9(51):eadi0497. doi: 10.1126/sciadv.adi0497. Epub 2023 Dec 22.Sci Adv. 2023.PMID:38134274Free PMC article.
- Risk factors for the time to development of retinopathy of prematurity in premature infants in Iran: a machine learning approach.Tapak L, Farahani LN, Taleghani NT, Ebrahimiadib N, Pour EK, Farahani AD, Hamidi O.Tapak L, et al.BMC Ophthalmol. 2024 Aug 23;24(1):364. doi: 10.1186/s12886-024-03637-w.BMC Ophthalmol. 2024.PMID:39180010Free PMC article.
- Identification of potential ferroptosis-related biomarkers and a pharmacological compound in diabetic retinopathy based on machine learning and molecular docking.Liu J, Li X, Cheng Y, Liu K, Zou H, You Z.Liu J, et al.Front Endocrinol (Lausanne). 2022 Nov 24;13:988506. doi: 10.3389/fendo.2022.988506. eCollection 2022.Front Endocrinol (Lausanne). 2022.PMID:36506045Free PMC article.
- A review on longitudinal data analysis with random forest.Hu J, Szymczak S.Hu J, et al.Brief Bioinform. 2023 Mar 19;24(2):bbad002. doi: 10.1093/bib/bbad002.Brief Bioinform. 2023.PMID:36653905Free PMC article.Review.
- The accuracy of passive phone sensors in predicting daily mood.Pratap A, Atkins DC, Renn BN, Tanana MJ, Mooney SD, Anguera JA, Areán PA.Pratap A, et al.Depress Anxiety. 2019 Jan;36(1):72-81. doi: 10.1002/da.22822. Epub 2018 Aug 21.Depress Anxiety. 2019.PMID:30129691Free PMC article.Clinical Trial.
References
- Breiman L. Random forests. Machine Learning. 2001;45(1):5–32.
- Breiman L. Bagging predictors. Machine Learning. 1996;24(2):123–140.
- Ishwaran H, Kogalur UB, Gorodeski EZ, Minn AJ, Lauer MS. High-dimensional variable selection for survival data. Journal of the American Statistical Association. 2010;105(489):205–217.
- Breiman L, Friedman JH, Olshen R, Stone C. Classification and regression trees. Belmont, Calif.: Wadsworth; 1984.
- Biau G, Devroye L, Lugosi G. Consistency of random forests and other averaging classifiers. Journal of Machine Learning Research. 2008;9:2015–2033.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources