Modulators of nucleoside metabolism in the therapy of brain diseases
- PMID:21401494
- PMCID: PMC3081367
- DOI: 10.2174/156802611795347609
Modulators of nucleoside metabolism in the therapy of brain diseases
Abstract
Nucleoside receptors are known to be important targets for a variety of brain diseases. However, the therapeutic modulation of their endogenous agonists by inhibitors of nucleoside metabolism represents an alternative therapeutic strategy that has gained increasing attention in recent years. Deficiency in endogenous nucleosides, in particular of adenosine, may causally be linked to a variety of neurological diseases and neuropsychiatric conditions ranging from epilepsy and chronic pain to schizophrenia. Consequently, augmentation of nucleoside function by inhibiting their metabolism appears to be a rational therapeutic strategy with distinct advantages: (i) in contrast to specific receptor modulation, the increase (or decrease) of the amount of a nucleoside will affect several signal transduction pathways simultaneously and therefore have the unique potential to modify complex neurochemical networks; (ii) by acting on the network level, inhibitors of nucleoside metabolism are highly suited to fine-tune, restore, or amplify physiological functions of nucleosides; (iii) therefore inhibitors of nucleoside metabolism have promise for the "soft and smart" therapy of neurological diseases with the added advantage of reduced systemic side effects. This review will first highlight the role of nucleoside function and dysfunction in physiological and pathophysiological situations with a particular emphasis on the anticonvulsant, neuroprotective, and antinociceptive roles of adenosine. The second part of this review will cover pharmacological approaches to use inhibitors of nucleoside metabolism, with a special emphasis on adenosine kinase, the key regulator of endogenous adenosine. Finally, novel gene-based therapeutic strategies to inhibit nucleoside metabolism and focal treatment approaches will be discussed.
Figures

Similar articles
- Adenosine and related drugs in brain diseases: present and future in clinical trials.Lopes LV, Sebastião AM, Ribeiro JA.Lopes LV, et al.Curr Top Med Chem. 2011;11(8):1087-101. doi: 10.2174/156802611795347591.Curr Top Med Chem. 2011.PMID:21401493Review.
- Role of the purinergic signaling in epilepsy.Cieślak M, Wojtczak A, Komoszyński M.Cieślak M, et al.Pharmacol Rep. 2017 Feb;69(1):130-138. doi: 10.1016/j.pharep.2016.09.018. Epub 2016 Sep 22.Pharmacol Rep. 2017.PMID:27915186Review.
- The role of adenosine in the regulation of sleep.Huang ZL, Urade Y, Hayaishi O.Huang ZL, et al.Curr Top Med Chem. 2011;11(8):1047-57. doi: 10.2174/156802611795347654.Curr Top Med Chem. 2011.PMID:21401496Review.
- Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain.Ferré S, Diamond I, Goldberg SR, Yao L, Hourani SM, Huang ZL, Urade Y, Kitchen I.Ferré S, et al.Prog Neurobiol. 2007 Dec;83(5):332-47. doi: 10.1016/j.pneurobio.2007.04.002. Epub 2007 May 1.Prog Neurobiol. 2007.PMID:17532111Free PMC article.Review.
- Exploring the Role of N6-Substituents in Potent Dual Acting 5'-C-Ethyltetrazolyladenosine Derivatives: Synthesis, Binding, Functional Assays, and Antinociceptive Effects in Mice ∇.Petrelli R, Scortichini M, Kachler S, Boccella S, Cerchia C, Torquati I, Del Bello F, Salvemini D, Novellino E, Luongo L, Maione S, Jacobson KA, Lavecchia A, Klotz KN, Cappellacci L.Petrelli R, et al.J Med Chem. 2017 May 25;60(10):4327-4341. doi: 10.1021/acs.jmedchem.7b00291. Epub 2017 May 5.J Med Chem. 2017.PMID:28447789Free PMC article.
Cited by
- The Impact of the hAPP695SW Transgene and Associated Amyloid-β Accumulation on Murine Hippocampal Biochemical Pathways.Khorani M, Bobe G, Matthews DG, Magana AA, Caruso M, Gray NE, Quinn JF, Stevens JF, Soumyanath A, Maier CS.Khorani M, et al.J Alzheimers Dis. 2022;85(4):1601-1619. doi: 10.3233/JAD-215084.J Alzheimers Dis. 2022.PMID:34958022Free PMC article.
- Comparing the functional consequences of human stem cell transplantation in the irradiated rat brain.Acharya MM, Christie LA, Lan ML, Limoli CL.Acharya MM, et al.Cell Transplant. 2013;22(1):55-64. doi: 10.3727/096368912X640565. Epub 2012 Apr 26.Cell Transplant. 2013.PMID:22546529Free PMC article.
- Computer-Aided Drug Design (CADD) to De-Orphanize Marine Molecules: Finding Potential Therapeutic Agents for Neurodegenerative and Cardiovascular Diseases.Llorach-Pares L, Nonell-Canals A, Avila C, Sanchez-Martinez M.Llorach-Pares L, et al.Mar Drugs. 2022 Jan 5;20(1):53. doi: 10.3390/md20010053.Mar Drugs. 2022.PMID:35049908Free PMC article.
- An emerging role for adenosine and its receptors in bone homeostasis.Ham J, Evans BA.Ham J, et al.Front Endocrinol (Lausanne). 2012 Sep 18;3:113. doi: 10.3389/fendo.2012.00113. eCollection 2012.Front Endocrinol (Lausanne). 2012.PMID:23024635Free PMC article.
- Glial adenosine kinase--a neuropathological marker of the epileptic brain.Aronica E, Sandau US, Iyer A, Boison D.Aronica E, et al.Neurochem Int. 2013 Dec;63(7):688-95. doi: 10.1016/j.neuint.2013.01.028. Epub 2013 Feb 4.Neurochem Int. 2013.PMID:23385089Free PMC article.Review.
References
- Inagaki A, Nakamura T, Wakisaka G. Studies on the mechanism of action of 1-beta-D-arabinofuranosylcytosine as an inhibitor of DNA synthesis in human leukemic leukocytes. Cancer Res. 1969;29(12):2169–2176. - PubMed
- Jarman M, Kuszmann J, Stock JA. Aminoacyl nucleosides derived from the tumour inhibitor, 1-aminocyclopentanecarboxylic acid. Biochem Pharmacol. 1969;18(10):2473–2484. - PubMed
- Brink JJ, Lepage GA. 9-Beta-D-Arabinofuranosyladenine as an Inhibitor of Metabolism in Normal and Neoplastic Cells. Can J Biochem Physiol. 1965;43:1–15. - PubMed
- King AE, Ackley MA, Cass CE, Young JD, Baldwin SA. Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci. 2006;27(8):416–425. - PubMed
- Sebastiao AM, Ribeiro JA. Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci. 2000;21(9):341–346. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
- R01 NS058780/NS/NINDS NIH HHS/United States
- R01 MH083973/MH/NIMH NIH HHS/United States
- R01 NS061844/NS/NINDS NIH HHS/United States
- R21 NS057538/NS/NINDS NIH HHS/United States
- R01 MH083973-02/MH/NIMH NIH HHS/United States
- R21NS058780/NS/NINDS NIH HHS/United States
- R01NS061844/NS/NINDS NIH HHS/United States
- R01NS058780/NS/NINDS NIH HHS/United States
- R21 NS057475-02/NS/NINDS NIH HHS/United States
- R01 NS061844-02/NS/NINDS NIH HHS/United States
- R21 NS057475/NS/NINDS NIH HHS/United States
- R21 NS057538-02/NS/NINDS NIH HHS/United States
- R01 NS058780-03/NS/NINDS NIH HHS/United States
- R21NS0-57538/NS/NINDS NIH HHS/United States
- R01MH083973/MH/NIMH NIH HHS/United States
LinkOut - more resources
Full Text Sources
Medical