Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation
- PMID:19682439
- PMCID: PMC2766433
- DOI: 10.1016/j.bcp.2009.08.005
Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation
Abstract
Epilepsy is a common seizure disorder affecting approximately 70 million people worldwide. Current pharmacotherapy is neuron-centered, frequently accompanied by intolerable side effects, and fails to be effective in about one third of patients. Therefore, new therapeutic concepts are needed. Recent research suggests an astrocytic basis of epilepsy, presenting the possibility of novel therapeutic targets. In particular, dysfunction of the astrocyte-controlled, endogenous, adenosine-based seizure control system of the brain is implicated in seizure generation. Thus, astrogliosis - a pathological hallmark of the epileptic brain - is associated with upregulation of the adenosine-removing enzyme adenosine kinase (ADK), resulting in focal adenosine deficiency. Both astrogliotic upregulation of ADK in epilepsy and transgenic overexpression of ADK are associated with seizures, and inhibition of ADK prevents seizures in a mouse model of pharmacoresistant epilepsy. These findings link adenosine deficiency with seizures and predict that adenosine augmentation therapies (AATs) will likely be effective in preventing seizures. Given the wide-spread systemic and central side effects of systemically administered AATs, focal AATs (i.e., limited to the astrogliotic lesion) are a necessity. This Commentary will discuss the pharmacological rationale for the development of focal AATs. Additionally, several AAT strategies will be discussed: (1) adenosine released from silk-based brain implants; (2) adenosine released from locally implanted encapsulated cells; (3) adenosine released from stem cell-derived brain implants; and (4) adenosine augmenting gene therapies. Finally, new developments and therapeutic challenges in using focal AATs for epilepsy therapy will critically be evaluated.
Figures
Similar articles
- Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies.Boison D.Boison D.Epilepsy Res. 2009 Aug;85(2-3):131-41. doi: 10.1016/j.eplepsyres.2009.03.019. Epub 2009 May 9.Epilepsy Res. 2009.PMID:19428218Free PMC article.Review.
- Adenosine dysfunction and adenosine kinase in epileptogenesis.Boison D.Boison D.Open Neurosci J. 2010 Jan 1;4:93-101. doi: 10.2174/1874082001004020093.Open Neurosci J. 2010.PMID:20730044Free PMC article.
- The adenosine kinase hypothesis of epileptogenesis.Boison D.Boison D.Prog Neurobiol. 2008 Mar;84(3):249-62. doi: 10.1016/j.pneurobio.2007.12.002. Epub 2007 Dec 23.Prog Neurobiol. 2008.PMID:18249058Free PMC article.Review.
- Role of Adenosine Kinase Inhibitor in Adenosine Augmentation Therapy for Epilepsy: A Potential Novel Drug for Epilepsy.Wang X, Li T.Wang X, et al.Curr Drug Targets. 2020;21(3):252-257. doi: 10.2174/1389450119666191014104347.Curr Drug Targets. 2020.PMID:31633474Review.
- Adenosine kinase as a target for therapeutic antisense strategies in epilepsy.Theofilas P, Brar S, Stewart KA, Shen HY, Sandau US, Poulsen D, Boison D.Theofilas P, et al.Epilepsia. 2011 Mar;52(3):589-601. doi: 10.1111/j.1528-1167.2010.02947.x. Epub 2011 Jan 28.Epilepsia. 2011.PMID:21275977Free PMC article.
Cited by
- Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors.zur Nedden S, Hawley S, Pentland N, Hardie DG, Doney AS, Frenguelli BG.zur Nedden S, et al.J Neurosci. 2011 Apr 20;31(16):6221-34. doi: 10.1523/JNEUROSCI.4039-10.2011.J Neurosci. 2011.PMID:21508245Free PMC article.
- Modulators of nucleoside metabolism in the therapy of brain diseases.Boison D.Boison D.Curr Top Med Chem. 2011;11(8):1068-86. doi: 10.2174/156802611795347609.Curr Top Med Chem. 2011.PMID:21401494Free PMC article.Review.
- Genome Editing in Neuroepithelial Stem Cells to Generate Human Neurons with High Adenosine-Releasing Capacity.Poppe D, Doerr J, Schneider M, Wilkens R, Steinbeck JA, Ladewig J, Tam A, Paschon DE, Gregory PD, Reik A, Müller CE, Koch P, Brüstle O.Poppe D, et al.Stem Cells Transl Med. 2018 Jun;7(6):477-486. doi: 10.1002/sctm.16-0272. Epub 2018 Mar 28.Stem Cells Transl Med. 2018.PMID:29589874Free PMC article.
- Adenosine A2A receptor and ecto-5'-nucleotidase/CD73 are upregulated in hippocampal astrocytes of human patients with mesial temporal lobe epilepsy (MTLE).Barros-Barbosa AR, Ferreirinha F, Oliveira Â, Mendes M, Lobo MG, Santos A, Rangel R, Pelletier J, Sévigny J, Cordeiro JM, Correia-de-Sá P.Barros-Barbosa AR, et al.Purinergic Signal. 2016 Dec;12(4):719-734. doi: 10.1007/s11302-016-9535-2. Epub 2016 Sep 20.Purinergic Signal. 2016.PMID:27650530Free PMC article.
- Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase.Diógenes MJ, Neves-Tomé R, Fucile S, Martinello K, Scianni M, Theofilas P, Lopatár J, Ribeiro JA, Maggi L, Frenguelli BG, Limatola C, Boison D, Sebastião AM.Diógenes MJ, et al.Cereb Cortex. 2014 Jan;24(1):67-80. doi: 10.1093/cercor/bhs284. Epub 2012 Sep 20.Cereb Cortex. 2014.PMID:22997174Free PMC article.
References
- Nadkarni S, LaJoie J, Devinsky O. Current treatments of epilepsy. Neurology. 2005;64:S2–11. - PubMed
- Luna-Tortos C, Fedrowitz M, Loscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology. 2008;55:1364–75. - PubMed
- Hughes JR. One of the hottest topics in epileptology: ABC proteins. Their inhibition may be the future for patients with intractable seizures. Neurol Res. 2008;30:920–5. - PubMed
- Verkhratsky A. Neuronismo y reticulismo: neuronal-glial circuits unify the reticular and neuronal theories of brain organization. Acta Physiol (Oxf) 2009;195:111–22. - PubMed
- Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med. 2007;13:54–63. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
- R01 NS058780/NS/NINDS NIH HHS/United States
- R01 MH083973/MH/NIMH NIH HHS/United States
- R21NS057538-01/NS/NINDS NIH HHS/United States
- R01 NS061844/NS/NINDS NIH HHS/United States
- R21 NS057538/NS/NINDS NIH HHS/United States
- R01NS061844/NS/NINDS NIH HHS/United States
- R01NS058780/NS/NINDS NIH HHS/United States
- R21 NS057475-02/NS/NINDS NIH HHS/United States
- R01 NS058780-02/NS/NINDS NIH HHS/United States
- R01 NS061844-01A2/NS/NINDS NIH HHS/United States
- R21 NS057538-02/NS/NINDS NIH HHS/United States
- R01 MH083973-01A1/MH/NIMH NIH HHS/United States
- R21 NS057475/NS/NINDS NIH HHS/United States
- R01MH083973/MH/NIMH NIH HHS/United States
- R21NS057475-01/NS/NINDS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous