Efficient protein depletion by genetically controlled deprotection of a dormant N-degron
- PMID:19401679
- PMCID: PMC2683728
- DOI: 10.1038/msb.2009.25
Efficient protein depletion by genetically controlled deprotection of a dormant N-degron
Abstract
Methods that allow for the manipulation of genes or their products have been highly fruitful for biomedical research. Here, we describe a method that allows the control of protein abundance by a genetically encoded regulatory system. We developed a dormant N-degron that can be attached to the N-terminus of a protein of interest. Upon expression of a site-specific protease, the dormant N-degron becomes deprotected. The N-degron then targets itself and the attached protein for rapid proteasomal degradation through the N-end rule pathway. We use an optimized tobacco etch virus (TEV) protease variant combined with selective target binding to achieve complete and rapid deprotection of the N-degron-tagged proteins. This method, termed TEV protease induced protein inactivation (TIPI) of TIPI-degron (TDeg) modified target proteins is fast, reversible, and applicable to a broad range of proteins. TIPI of yeast proteins essential for vegetative growth causes phenotypes that are close to deletion mutants. The features of the TIPI system make it a versatile tool to study protein function in eukaryotes and to create new modules for synthetic or systems biology.
Conflict of interest statement
The authors declare that they have no conflict of interest.
Figures



Similar articles
- Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron.Jungbluth M, Renicke C, Taxis C.Jungbluth M, et al.BMC Syst Biol. 2010 Dec 29;4:176. doi: 10.1186/1752-0509-4-176.BMC Syst Biol. 2010.PMID:21190544Free PMC article.
- TIPI: TEV protease-mediated induction of protein instability.Taxis C, Knop M.Taxis C, et al.Methods Mol Biol. 2012;832:611-26. doi: 10.1007/978-1-61779-474-2_43.Methods Mol Biol. 2012.PMID:22350916
- Light-dependent N-end rule-mediated disruption of protein function in Saccharomyces cerevisiae and Drosophila melanogaster.Stevens LM, Kim G, Koromila T, Steele JW, McGehee J, Stathopoulos A, Stein DS.Stevens LM, et al.PLoS Genet. 2021 May 17;17(5):e1009544. doi: 10.1371/journal.pgen.1009544. eCollection 2021 May.PLoS Genet. 2021.PMID:33999957Free PMC article.
- Evaluation of the lower protein limit in the budding yeast Saccharomyces cerevisiae using TIPI-gTOW.Sasabe M, Shintani S, Kintaka R, Kaizu K, Makanae K, Moriya H.Sasabe M, et al.BMC Syst Biol. 2014 Jan 7;8:2. doi: 10.1186/1752-0509-8-2.BMC Syst Biol. 2014.PMID:24393197Free PMC article.
- In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae.Ulrich HD, Davies AA.Ulrich HD, et al.Methods Mol Biol. 2009;497:81-103. doi: 10.1007/978-1-59745-566-4_6.Methods Mol Biol. 2009.PMID:19107412Review.
Cited by
- Small-molecule control of protein degradation using split adaptors.Davis JH, Baker TA, Sauer RT.Davis JH, et al.ACS Chem Biol. 2011 Nov 18;6(11):1205-13. doi: 10.1021/cb2001389. Epub 2011 Sep 8.ACS Chem Biol. 2011.PMID:21866931Free PMC article.
- Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae.McIsaac RS, Silverman SJ, McClean MN, Gibney PA, Macinskas J, Hickman MJ, Petti AA, Botstein D.McIsaac RS, et al.Mol Biol Cell. 2011 Nov;22(22):4447-59. doi: 10.1091/mbc.E11-05-0466. Epub 2011 Sep 30.Mol Biol Cell. 2011.PMID:21965290Free PMC article.
- Acute disruption of the synaptic vesicle membrane protein synaptotagmin 1 using knockoff in mouse hippocampal neurons.Vevea JD, Chapman ER.Vevea JD, et al.Elife. 2020 Jun 9;9:e56469. doi: 10.7554/eLife.56469.Elife. 2020.PMID:32515733Free PMC article.
- Autophagy of an Amyloid-like Translational Repressor Regulates Meiotic Exit.Wang F, Zhang R, Feng W, Tsuchiya D, Ballew O, Li J, Denic V, Lacefield S.Wang F, et al.Dev Cell. 2020 Jan 27;52(2):141-151.e5. doi: 10.1016/j.devcel.2019.12.017.Dev Cell. 2020.PMID:31991104Free PMC article.
- CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability.Martínez V, Lauritsen I, Hobel T, Li S, Nielsen AT, Nørholm MHH.Martínez V, et al.Nucleic Acids Res. 2017 Nov 16;45(20):e171. doi: 10.1093/nar/gkx797.Nucleic Acids Res. 2017.PMID:28981713Free PMC article.
References
- Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234: 179–186 - PubMed
- Bayle JH, Grimley JS, Stankunas K, Gestwicki JE, Wandless TJ, Crabtree GR (2006) Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chem Biol 13: 99–107 - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases