Progress in metabolic engineering of Saccharomyces cerevisiae
- PMID:18772282
- PMCID: PMC2546860
- DOI: 10.1128/MMBR.00025-07
Progress in metabolic engineering of Saccharomyces cerevisiae
Abstract
The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial ("white") biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate.
Figures




Similar articles
- Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown.Hasunuma T, Ishii J, Kondo A.Hasunuma T, et al.Curr Opin Chem Biol. 2015 Dec;29:1-9. doi: 10.1016/j.cbpa.2015.06.004. Epub 2015 Jun 23.Curr Opin Chem Biol. 2015.PMID:26113493Review.
- Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJ.Wisselink HW, et al.Appl Environ Microbiol. 2007 Aug;73(15):4881-91. doi: 10.1128/AEM.00177-07. Epub 2007 Jun 1.Appl Environ Microbiol. 2007.PMID:17545317Free PMC article.
- Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.Borodina I, Nielsen J.Borodina I, et al.Biotechnol J. 2014 May;9(5):609-20. doi: 10.1002/biot.201300445. Epub 2014 Feb 24.Biotechnol J. 2014.PMID:24677744Review.
- Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives.Matsushika A, Inoue H, Kodaki T, Sawayama S.Matsushika A, et al.Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53. doi: 10.1007/s00253-009-2101-x. Epub 2009 Jul 2.Appl Microbiol Biotechnol. 2009.PMID:19572128Review.
- From yeast genetics to biotechnology.Maráz A.Maráz A.Acta Microbiol Immunol Hung. 2002;49(4):483-91. doi: 10.1556/AMicr.49.2002.4.6.Acta Microbiol Immunol Hung. 2002.PMID:12512257Review.
Cited by
- Promoter Architecture and Promoter Engineering inSaccharomyces cerevisiae.Tang H, Wu Y, Deng J, Chen N, Zheng Z, Wei Y, Luo X, Keasling JD.Tang H, et al.Metabolites. 2020 Aug 6;10(8):320. doi: 10.3390/metabo10080320.Metabolites. 2020.PMID:32781665Free PMC article.Review.
- The microbiology of malting and brewing.Bokulich NA, Bamforth CW.Bokulich NA, et al.Microbiol Mol Biol Rev. 2013 Jun;77(2):157-72. doi: 10.1128/MMBR.00060-12.Microbiol Mol Biol Rev. 2013.PMID:23699253Free PMC article.Review.
- Utilization of a Strongly InducibleDDI2 Promoter to Control Gene Expression inSaccharomyces cerevisiae.Lin A, Zeng C, Wang Q, Zhang W, Li M, Hanna M, Xiao W.Lin A, et al.Front Microbiol. 2018 Nov 16;9:2736. doi: 10.3389/fmicb.2018.02736. eCollection 2018.Front Microbiol. 2018.PMID:30505295Free PMC article.
- The role of synthetic biology in the design of microbial cell factories for biofuel production.Colin VL, Rodríguez A, Cristóbal HA.Colin VL, et al.J Biomed Biotechnol. 2011;2011:601834. doi: 10.1155/2011/601834. Epub 2011 Oct 15.J Biomed Biotechnol. 2011.PMID:22028591Free PMC article.Review.
- Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.Hirooka S, Higuchi S, Uzuka A, Nozaki H, Miyagishima SY.Hirooka S, et al.PLoS One. 2014 Sep 15;9(9):e107702. doi: 10.1371/journal.pone.0107702. eCollection 2014.PLoS One. 2014.PMID:25221913Free PMC article.
References
- Abdel-Fattah, W. R., M. Fadil, P. Nigam, and I. M. Banat. 2000. Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery. Biotechnol. Bioeng. 68531-535. - PubMed
- Acerenza, L. 2000. Design of large metabolic responses. Constraints and sensitivity analysis. J. Theor. Biol. 207265-282. - PubMed
- Aguilera, J., T. Petit, J. H. de Winde, and J. T. Pronk. 2005. Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations. FEMS Yeast Res. 5579-593. - PubMed
- Akada, R. 2002. Genetically modified industrial yeast ready for application. J. Biosci. Bioeng. 94536-544. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials