Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
- PMID:18032601
- PMCID: PMC2148292
- DOI: 10.1073/pnas.0709747104
Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
Abstract
Tumor cell proliferation requires rapid synthesis of macromolecules including lipids, proteins, and nucleotides. Many tumor cells exhibit rapid glucose consumption, with most of the glucose-derived carbon being secreted as lactate despite abundant oxygen availability (the Warburg effect). Here, we used 13C NMR spectroscopy to examine the metabolism of glioblastoma cells exhibiting aerobic glycolysis. In these cells, the tricarboxylic acid (TCA) cycle was active but was characterized by an efflux of substrates for use in biosynthetic pathways, particularly fatty acid synthesis. The success of this synthetic activity depends on activation of pathways to generate reductive power (NADPH) and to restore oxaloacetate for continued TCA cycle function (anaplerosis). Surprisingly, both these needs were met by a high rate of glutamine metabolism. First, conversion of glutamine to lactate (glutaminolysis) was rapid enough to produce sufficient NADPH to support fatty acid synthesis. Second, despite substantial mitochondrial pyruvate metabolism, pyruvate carboxylation was suppressed, and anaplerotic oxaloacetate was derived from glutamine. Glutamine catabolism was accompanied by secretion of alanine and ammonia, such that most of the amino groups from glutamine were lost from the cell rather than incorporated into other molecules. These data demonstrate that transformed cells exhibit a high rate of glutamine consumption that cannot be explained by the nitrogen demand imposed by nucleotide synthesis or maintenance of nonessential amino acid pools. Rather, glutamine metabolism provides a carbon source that facilitates the cell's ability to use glucose-derived carbon and TCA cycle intermediates as biosynthetic precursors.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
- Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma.Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, Miletic H, Sakariassen PØ, Weinstock A, Wagner A, Lindsay SL, Hock AK, Barnett SC, Ruppin E, Mørkve SH, Lund-Johansen M, Chalmers AJ, Bjerkvig R, Niclou SP, Gottlieb E.Tardito S, et al.Nat Cell Biol. 2015 Dec;17(12):1556-68. doi: 10.1038/ncb3272. Epub 2015 Nov 23.Nat Cell Biol. 2015.PMID:26595383Free PMC article.
- Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth.Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G, Chiaradonna F.Gaglio D, et al.Mol Syst Biol. 2011 Aug 16;7:523. doi: 10.1038/msb.2011.56.Mol Syst Biol. 2011.PMID:21847114Free PMC article.
- Pyruvate carboxylase is required for glutamine-independent growth of tumor cells.Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Matés JM, DeBerardinis RJ.Cheng T, et al.Proc Natl Acad Sci U S A. 2011 May 24;108(21):8674-9. doi: 10.1073/pnas.1016627108. Epub 2011 May 9.Proc Natl Acad Sci U S A. 2011.PMID:21555572Free PMC article.
- Metabolism and brain cancer.Marie SK, Shinjo SM.Marie SK, et al.Clinics (Sao Paulo). 2011;66 Suppl 1(Suppl 1):33-43. doi: 10.1590/s1807-59322011001300005.Clinics (Sao Paulo). 2011.PMID:21779721Free PMC article.Review.
- Glutamine-fueled mitochondrial metabolism is decoupled from glycolysis in melanoma.Filipp FV, Ratnikov B, De Ingeniis J, Smith JW, Osterman AL, Scott DA.Filipp FV, et al.Pigment Cell Melanoma Res. 2012 Nov;25(6):732-9. doi: 10.1111/pcmr.12000. Epub 2012 Oct 1.Pigment Cell Melanoma Res. 2012.PMID:22846158Free PMC article.Review.
Cited by
- A roadmap for interpreting (13)C metabolite labeling patterns from cells.Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, DeBerardinis RJ, Feron O, Frezza C, Ghesquiere B, Gottlieb E, Hiller K, Jones RG, Kamphorst JJ, Kibbey RG, Kimmelman AC, Locasale JW, Lunt SY, Maddocks OD, Malloy C, Metallo CM, Meuillet EJ, Munger J, Nöh K, Rabinowitz JD, Ralser M, Sauer U, Stephanopoulos G, St-Pierre J, Tennant DA, Wittmann C, Vander Heiden MG, Vazquez A, Vousden K, Young JD, Zamboni N, Fendt SM.Buescher JM, et al.Curr Opin Biotechnol. 2015 Aug;34:189-201. doi: 10.1016/j.copbio.2015.02.003. Epub 2015 Feb 28.Curr Opin Biotechnol. 2015.PMID:25731751Free PMC article.Review.
- Inhibition of glutaminolysis in combination with other therapies to improve cancer treatment.Shen YA, Chen CL, Huang YH, Evans EE, Cheng CC, Chuang YJ, Zhang C, Le A.Shen YA, et al.Curr Opin Chem Biol. 2021 Jun;62:64-81. doi: 10.1016/j.cbpa.2021.01.006. Epub 2021 Mar 12.Curr Opin Chem Biol. 2021.PMID:33721588Free PMC article.Review.
- Famine versus feast: understanding the metabolism of tumors in vivo.Mayers JR, Vander Heiden MG.Mayers JR, et al.Trends Biochem Sci. 2015 Mar;40(3):130-40. doi: 10.1016/j.tibs.2015.01.004. Epub 2015 Jan 29.Trends Biochem Sci. 2015.PMID:25639751Free PMC article.Review.
- Metabolic control of cancer cell stemness: Lessons from iPS cells.Menendez JA.Menendez JA.Cell Cycle. 2015;14(24):3801-11. doi: 10.1080/15384101.2015.1022697.Cell Cycle. 2015.PMID:25738999Free PMC article.Review.
- Connecting the dots between PubMed abstracts.Hossain MS, Gresock J, Edmonds Y, Helm R, Potts M, Ramakrishnan N.Hossain MS, et al.PLoS One. 2012;7(1):e29509. doi: 10.1371/journal.pone.0029509. Epub 2012 Jan 3.PLoS One. 2012.PMID:22235301Free PMC article.
References
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous