A fluorometric method for the differentiation of algal populations in vivo and in situ
- PMID:16228533
- DOI: 10.1023/A:1016026607048
A fluorometric method for the differentiation of algal populations in vivo and in situ
Abstract
Fingerprints of excitation spectra of chlorophyll (Chl) fluorescence can be used to differentiate 'spectral groups' of microalgae in vivo and in situ in, for example, vertical profiles within a few seconds. The investigated spectral groups of algae (green group, Chlorophyta; blue, Cyanobacteria; brown, Heterokontophyta, Haptophyta, Dinophyta; mixed, Cryptophyta) are each characterised by a specific composition of photosynthetic antenna pigments and, consequently, by a specific excitation spectrum of the Chl fluorescence. Particularly relevant are Chl a, Chl c, phycocyanobilin, phycoerythrobilin, fucoxanthin and peridinin. A laboratory-based instrument and a submersible instrument were constructed containing light-emitting diodes to excite Chl fluorescence in five distinct wavelength ranges. Norm spectra were determined for the four spectral algal groups (several species per group). Using these norm spectra and the actual five-point excitation spectrum of a water sample, a separate estimate of the respective Chl concentration is rapidly obtained for each algal group. The results of dilution experiments are presented. In vivo and in situ measurements are compared with results obtained by HPLC analysis. Depth profiles of the distribution of spectral algal groups taken over a time period of few seconds are shown. The method for algae differentiation described here opens up new research areas, monitoring and supervision tasks related to photosynthetic primary production in aquatic environments.
Similar articles
- The stereochemistry of chlorophyll-c₃ from the haptophyte Emiliania huxleyi: the (13²R)-enantiomers of chlorophylls-c are exclusively selected as the photosynthetically active pigments in chromophyte algae.Mizoguchi T, Kimura Y, Yoshitomi T, Tamiaki H.Mizoguchi T, et al.Biochim Biophys Acta. 2011 Nov;1807(11):1467-73. doi: 10.1016/j.bbabio.2011.07.008. Epub 2011 Jul 23.Biochim Biophys Acta. 2011.PMID:21806961
- On the Simultaneous Identification and Quantification of Microalgae Populations Based on Fluorometric Techniques.Gsponer NS, Rodríguez MC, Palacios RE, Chesta CA.Gsponer NS, et al.Photochem Photobiol. 2018 Sep;94(5):875-880. doi: 10.1111/php.12936. Epub 2018 Jun 4.Photochem Photobiol. 2018.PMID:29768724
- Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits.Jakob T, Schreiber U, Kirchesch V, Langner U, Wilhelm C.Jakob T, et al.Photosynth Res. 2005;83(3):343-61. doi: 10.1007/s11120-005-1329-2.Photosynth Res. 2005.PMID:16143924
- Biological and remote sensing perspectives of pigmentation in coral reef organisms.Hedley JD, Mumby PJ.Hedley JD, et al.Adv Mar Biol. 2002;43:277-317. doi: 10.1016/s0065-2881(02)43006-4.Adv Mar Biol. 2002.PMID:12154614Review.
- Light harvesting complexes in chlorophyll c-containing algae.Büchel C.Büchel C.Biochim Biophys Acta Bioenerg. 2020 Apr 1;1861(4):148027. doi: 10.1016/j.bbabio.2019.05.003. Epub 2019 May 31.Biochim Biophys Acta Bioenerg. 2020.PMID:31153887Review.
Cited by
- Could the presence of larger fractions of non-cyanobacterial species be used as a predictor of microcystin production under variable nutrient regimes?Sinang SC, Reichwaldt ES, Ghadouani A.Sinang SC, et al.Environ Monit Assess. 2015 Jul;187(7):476. doi: 10.1007/s10661-015-4695-z. Epub 2015 Jun 30.Environ Monit Assess. 2015.PMID:26122127
- Nitrogen Limitation of Intense and Toxic Cyanobacteria Blooms in Lakes within Two of the Most Visited Parks in the USA: The Lake in Central Park and Prospect Park Lake.Flanzenbaum JM, Jankowiak JG, Goleski JA, Gorney RM, Gobler CJ.Flanzenbaum JM, et al.Toxins (Basel). 2022 Oct 6;14(10):684. doi: 10.3390/toxins14100684.Toxins (Basel). 2022.PMID:36287953Free PMC article.
- Climate change triggered planktonic cyanobacterial blooms in a regulated temperate river.Kleinteich J, Frassl MA, Schulz M, Fischer H.Kleinteich J, et al.Sci Rep. 2024 Jul 15;14(1):16298. doi: 10.1038/s41598-024-66586-w.Sci Rep. 2024.PMID:39009635Free PMC article.
- The Lake Erie HABs Grab: A binational collaboration to characterize the western basin cyanobacterial harmful algal blooms at an unprecedented high-resolution spatial scale.Chaffin JD, Bratton JF, Verhamme EM, Bair HB, Beecher AA, Binding CE, Birbeck JA, Bridgeman TB, Chang X, Crossman J, Currie WJS, Davis TW, Dick GJ, Drouillard KG, Errera RM, Frenken T, MacIsaac HJ, McClure A, McKay RM, Reitz LA, Domingo JWS, Stanislawczyk K, Stumpf RP, Swan ZD, Snyder BK, Westrick JA, Xue P, Yancey CE, Zastepa A, Zhou X.Chaffin JD, et al.Harmful Algae. 2021 Aug;108:102080. doi: 10.1016/j.hal.2021.102080. Epub 2021 Jul 23.Harmful Algae. 2021.PMID:34588116Free PMC article.
- The Composition and Function of Microbiomes WithinMicrocystis Colonies Are Significantly Different Than Native Bacterial Assemblages in Two North American Lakes.Jankowiak JG, Gobler CJ.Jankowiak JG, et al.Front Microbiol. 2020 May 28;11:1016. doi: 10.3389/fmicb.2020.01016. eCollection 2020.Front Microbiol. 2020.PMID:32547511Free PMC article.
References
LinkOut - more resources
Full Text Sources
Other Literature Sources