Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii
- PMID:15701787
- PMCID: PMC549340
- DOI: 10.1128/EC.4.2.253-261.2005
Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii
Abstract
The presence of plastids in diverse eukaryotic lineages that have lost the capacity for photosynthesis is well documented. The metabolic functions of such organelles, however, are poorly understood except in the case of the apicoplast in the Apicomplexa, a group of intracellular parasites including Plasmodium falciparum, and the plastid of the green alga Helicosporidium sp., a parasite for which the only host-free stage identified in nature so far is represented by cysts. As a first step in the reconstruction of plastid functions in a nonphotosynthetic, predominantly free-living organism, we searched for expressed sequence tags (ESTs) that correspond to nucleus-encoded plastid-targeted polypeptides in the green alga Prototheca wickerhamii. From 3,856 ESTs, we found that 71 unique sequences (235 ESTs) correspond to different nucleus-encoded putatively plastid-targeted polypeptides. The identified proteins predict that carbohydrate, amino acid, lipid, tetrapyrrole, and isoprenoid metabolism as well as de novo purine biosynthesis and oxidoreductive processes take place in the plastid of P. wickerhamii. Mg-protoporphyrin accumulation and, therefore, plastid-to-nucleus signaling might also occur in this nonphotosynthetic organism, as we identified a transcript which encodes subunit I of Mg-chelatase, the enzyme which catalyzes the first committed step in chlorophyll synthesis. Our data indicate a far more complex metabolism in P. wickerhamii's plastid compared with the metabolic pathways predicted to be located in the apicoplast of P. falciparum and the plastid of Helicosporidium sp.
Figures


Similar articles
- Nucleus-encoded genes for plastid-targeted proteins in Helicosporidium: functional diversity of a cryptic plastid in a parasitic alga.de Koning AP, Keeling PJ.de Koning AP, et al.Eukaryot Cell. 2004 Oct;3(5):1198-205. doi: 10.1128/EC.3.5.1198-1205.2004.Eukaryot Cell. 2004.PMID:15470248Free PMC article.
- The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome.Tartar A, Boucias DG.Tartar A, et al.FEMS Microbiol Lett. 2004 Apr 1;233(1):153-7. doi: 10.1016/j.femsle.2004.02.006.FEMS Microbiol Lett. 2004.PMID:15043882
- Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca.Suzuki S, Endoh R, Manabe RI, Ohkuma M, Hirakawa Y.Suzuki S, et al.Sci Rep. 2018 Jan 17;8(1):940. doi: 10.1038/s41598-017-18378-8.Sci Rep. 2018.PMID:29343788Free PMC article.
- Bilateral communication between plastid and the nucleus: plastid protein import and plastid-to-nucleus retrograde signaling.Inaba T.Inaba T.Biosci Biotechnol Biochem. 2010;74(3):471-6. doi: 10.1271/bbb.90842. Epub 2010 Mar 7.Biosci Biotechnol Biochem. 2010.PMID:20208345Review.
- Complex Endosymbioses II: The Nonphotosynthetic Plastid of Apicomplexa Parasites (The Apicoplast) and Its Integrated Metabolism.Botté CY, Yamaryo-Botté Y.Botté CY, et al.Methods Mol Biol. 2018;1829:37-54. doi: 10.1007/978-1-4939-8654-5_3.Methods Mol Biol. 2018.PMID:29987713Review.
Cited by
- What Happened before Losses of Photosynthesis in Cryptophyte Algae?Suzuki S, Matsuzaki R, Yamaguchi H, Kawachi M.Suzuki S, et al.Mol Biol Evol. 2022 Feb 3;39(2):msac001. doi: 10.1093/molbev/msac001.Mol Biol Evol. 2022.PMID:35079797Free PMC article.
- A structure-based approach to ligand discovery for 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase: a target for antimicrobial therapy.Ramsden NL, Buetow L, Dawson A, Kemp LA, Ulaganathan V, Brenk R, Klebe G, Hunter WN.Ramsden NL, et al.J Med Chem. 2009 Apr 23;52(8):2531-42. doi: 10.1021/jm801475n.J Med Chem. 2009.PMID:19320487Free PMC article.
- Comparative Plastid Genomics of Non-Photosynthetic Chrysophytes: Genome Reduction and Compaction.Kim JI, Jeong M, Archibald JM, Shin W.Kim JI, et al.Front Plant Sci. 2020 Sep 10;11:572703. doi: 10.3389/fpls.2020.572703. eCollection 2020.Front Plant Sci. 2020.PMID:33013997Free PMC article.
- Enzymes of the heme biosynthetic pathway in the nonphotosynthetic alga Polytomella sp.Atteia A, van Lis R, Beale SI.Atteia A, et al.Eukaryot Cell. 2005 Dec;4(12):2087-97. doi: 10.1128/EC.4.12.2087-2097.2005.Eukaryot Cell. 2005.PMID:16339726Free PMC article.
- From chloroplasts to "cryptic" plastids: evolution of plastid genomes in parasitic plants.Krause K.Krause K.Curr Genet. 2008 Sep;54(3):111-21. doi: 10.1007/s00294-008-0208-8. Epub 2008 Aug 12.Curr Genet. 2008.PMID:18696071Review.
References
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. - PubMed
- Archibald, J. M., and P. J. Keeling. 2002. Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet. 18:577-584. - PubMed
- Awai, K., E. Marechal, M. A. Block, D. Brun, T. Masuda, H. Shimada, K. Takamiya, H. Ohta, and J. Joyard. 2001. Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98:10960-10965. - PMC - PubMed
- Bannai, H., Y. Tamada, O. Maruyama, K. Nakai, and S. Miyano. 2002. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298-305. - PubMed
- Boucias, D. G., J. J. Becnel, S. E. White, and M. Bott. 2001. In vivo and in vitro development of the protist Helicosporidium sp. J. Eukaryot. Microbiol. 4:460-470. - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials