Kindling and status epilepticus models of epilepsy: rewiring the brain
- PMID:15193778
- DOI: 10.1016/j.pneurobio.2004.03.009
Kindling and status epilepticus models of epilepsy: rewiring the brain
Abstract
This review focuses on the remodeling of brain circuitry associated with epilepsy, particularly in excitatory glutamate and inhibitory GABA systems, including alterations in synaptic efficacy, growth of new connections, and loss of existing connections. From recent studies on the kindling and status epilepticus models, which have been used most extensively to investigate temporal lobe epilepsy, it is now clear that the brain reorganizes itself in response to excess neural activation, such as seizure activity. The contributing factors to this reorganization include activation of glutamate receptors, second messengers, immediate early genes, transcription factors, neurotrophic factors, axon guidance molecules, protein synthesis, neurogenesis, and synaptogenesis. Some of the resulting changes may, in turn, contribute to the permanent alterations in seizure susceptibility. There is increasing evidence that neurogenesis and synaptogenesis can appear not only in the mossy fiber pathway in the hippocampus but also in other limbic structures. Neuronal loss, induced by prolonged seizure activity, may also contribute to circuit restructuring, particularly in the status epilepticus model. However, it is unlikely that any one structure, plastic system, neurotrophin, or downstream effector pathway is uniquely critical for epileptogenesis. The sensitivity of neural systems to the modulation of inhibition makes a disinhibition hypothesis compelling for both the triggering stage of the epileptic response and the long-term changes that promote the epileptic state. Loss of selective types of interneurons, alteration of GABA receptor configuration, and/or decrease in dendritic inhibition could contribute to the development of spontaneous seizures.
Similar articles
- Kindling as a model of temporal lobe epilepsy induces bilateral changes in spontaneous striatal activity.Kücker S, Töllner K, Piechotta M, Gernert M.Kücker S, et al.Neurobiol Dis. 2010 Mar;37(3):661-72. doi: 10.1016/j.nbd.2009.12.002. Epub 2009 Dec 18.Neurobiol Dis. 2010.PMID:20005953
- Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus.Arabadzisz D, Antal K, Parpan F, Emri Z, Fritschy JM.Arabadzisz D, et al.Exp Neurol. 2005 Jul;194(1):76-90. doi: 10.1016/j.expneurol.2005.01.029.Exp Neurol. 2005.PMID:15899245
- Cellular abnormalities and synaptic plasticity in seizure disorders of the immature nervous system.Swann JW, Hablitz JJ.Swann JW, et al.Ment Retard Dev Disabil Res Rev. 2000;6(4):258-67. doi: 10.1002/1098-2779(2000)6:4<258::AID-MRDD5>3.0.CO;2-H.Ment Retard Dev Disabil Res Rev. 2000.PMID:11107191Review.
- Temporal specific patterns of semaphorin gene expression in rat brain after kainic acid-induced status epilepticus.Barnes G, Puranam RS, Luo Y, McNamara JO.Barnes G, et al.Hippocampus. 2003;13(1):1-20. doi: 10.1002/hipo.10041.Hippocampus. 2003.PMID:12625453
- The course of cellular alterations associated with the development of spontaneous seizures after status epilepticus.Dudek FE, Hellier JL, Williams PA, Ferraro DJ, Staley KJ.Dudek FE, et al.Prog Brain Res. 2002;135:53-65. doi: 10.1016/S0079-6123(02)35007-6.Prog Brain Res. 2002.PMID:12143370Review.
Cited by
- The Role of Wnt/β-Catenin Signaling Pathway in Disrupted Hippocampal Neurogenesis of Temporal Lobe Epilepsy: A Potential Therapeutic Target?Huang C, Fu XH, Zhou D, Li JM.Huang C, et al.Neurochem Res. 2015 Jul;40(7):1319-32. doi: 10.1007/s11064-015-1614-1. Epub 2015 May 27.Neurochem Res. 2015.PMID:26012365Review.
- Chimeric derivatives of functionalized amino acids and α-aminoamides: compounds with anticonvulsant activity in seizure models and inhibitory actions on central, peripheral, and cardiac isoforms of voltage-gated sodium channels.Torregrosa R, Yang XF, Dustrude ET, Cummins TR, Khanna R, Kohn H.Torregrosa R, et al.Bioorg Med Chem. 2015 Jul 1;23(13):3655-66. doi: 10.1016/j.bmc.2015.04.014. Epub 2015 Apr 11.Bioorg Med Chem. 2015.PMID:25922183Free PMC article.
- Rapid Amygdala Kindling Causes Motor Seizure and Comorbidity of Anxiety- and Depression-Like Behaviors in Rats.Chen SD, Wang YL, Liang SF, Shaw FZ.Chen SD, et al.Front Behav Neurosci. 2016 Jun 22;10:129. doi: 10.3389/fnbeh.2016.00129. eCollection 2016.Front Behav Neurosci. 2016.PMID:27445726Free PMC article.
- Dynamic electrical synapses rewire brain networks for persistent oscillations and epileptogenesis.Yang YC, Wang GH, Chou P, Hsueh SW, Lai YC, Kuo CC.Yang YC, et al.Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2313042121. doi: 10.1073/pnas.2313042121. Epub 2024 Feb 12.Proc Natl Acad Sci U S A. 2024.PMID:38346194Free PMC article.
- Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders.Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM.Zayed MA, et al.Cells. 2022 Nov 2;11(21):3476. doi: 10.3390/cells11213476.Cells. 2022.PMID:36359871Free PMC article.Review.
Publication types
MeSH terms
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources