Use of coefficient of variation in assessing variability of quantitative assays
- PMID:12414755
- PMCID: PMC130103
- DOI: 10.1128/cdli.9.6.1235-1239.2002
Use of coefficient of variation in assessing variability of quantitative assays
Erratum in
- Clin Diagn Lab Immunol. 2003 Nov;10(6):1162
Abstract
We have derived the mathematical relationship between the coefficient of variation associated with repeated measurements from quantitative assays and the expected fraction of pairs of those measurements that differ by at least some given factor, i.e., the expected frequency of disparate results that are due to assay variability rather than true differences. Knowledge of this frequency helps determine what magnitudes of differences can be expected by chance alone when the particular coefficient of variation is in effect. This frequency is an operational index of variability in the sense that it indicates the probability of observing a particular disparity between two measurements under the assumption that they measure the same quantity. Thus the frequency or probability becomes the basis for assessing if an assay is sufficiently precise. This assessment also provides a standard for determining if two assay results for the same subject, separated by an intervention such as vaccination or infection, differ by more than expected from the variation of the assay, thus indicating an intervention effect. Data from an international collaborative study are used to illustrate the application of this proposed interpretation of the coefficient of variation, and they also provide support for the assumptions used in the mathematical derivation.
Figures
Similar articles
- Can a teaching intervention reduce interobserver variability in LVEF assessment: a quality control exercise in the echocardiography lab.Johri AM, Picard MH, Newell J, Marshall JE, King ME, Hung J.Johri AM, et al.JACC Cardiovasc Imaging. 2011 Aug;4(8):821-9. doi: 10.1016/j.jcmg.2011.06.004.JACC Cardiovasc Imaging. 2011.PMID:21835373
- Assessing the impact of the frequency of quality control testing on the quality of reported patient results.Parvin CA.Parvin CA.Clin Chem. 2008 Dec;54(12):2049-54. doi: 10.1373/clinchem.2008.113639. Epub 2008 Oct 16.Clin Chem. 2008.PMID:18927244
- Inter- and intralaboratory variation of in vitro diffusion cell measurements: an international multicenter study using quasi-standardized methods and materials.Chilcott RP, Barai N, Beezer AE, Brain SI, Brown MB, Bunge AL, Burgess SE, Cross S, Dalton CH, Dias M, Farinha A, Finnin BC, Gallagher SJ, Green DM, Gunt H, Gwyther RL, Heard CM, Jarvis CA, Kamiyama F, Kasting GB, Ley EE, Lim ST, McNaughton GS, Morris A, Nazemi MH, Pellett MA, Du Plessis J, Quan YS, Raghavan SL, Roberts M, Romonchuk W, Roper CS, Schenk D, Simonsen L, Simpson A, Traversa BD, Trottet L, Watkinson A, Wilkinson SC, Williams FM, Yamamoto A, Hadgraft J.Chilcott RP, et al.J Pharm Sci. 2005 Mar;94(3):632-8. doi: 10.1002/jps.20229.J Pharm Sci. 2005.PMID:15666298
- Recognizing and Reducing Analytical Errors and Sources of Variation in Clinical Pathology Data in Safety Assessment Studies.Schultze AE, Irizarry AR.Schultze AE, et al.Toxicol Pathol. 2017 Feb;45(2):281-287. doi: 10.1177/0192623316672945. Epub 2016 Nov 15.Toxicol Pathol. 2017.PMID:28178899Review.
- What information on measurement uncertainty should be communicated to clinicians, and how?Plebani M, Sciacovelli L, Bernardi D, Aita A, Antonelli G, Padoan A.Plebani M, et al.Clin Biochem. 2018 Jul;57:18-22. doi: 10.1016/j.clinbiochem.2018.01.017. Epub 2018 Feb 2.Clin Biochem. 2018.PMID:29402416Review.
Cited by
- Robustness of radiomics among photon-counting detector CT and dual-energy CT systems: a texture phantom study.Zhu L, Dong H, Sun J, Wang L, Xing Y, Hu Y, Lu J, Yang J, Chu J, Yan C, Yuan F, Zhong J.Zhu L, et al.Eur Radiol. 2025 Feb;35(2):871-884. doi: 10.1007/s00330-024-10976-1. Epub 2024 Jul 24.Eur Radiol. 2025.PMID:39048741Free PMC article.
- Novel Monoclonal Antibodies Against Mouse C1q: Characterisation and Development of a Quantitative ELISA for Mouse C1q.Byrne RAJ, Torvell M, Daskoulidou N, Fathalla D, Kokkali E, Carpanini SM, Morgan BP.Byrne RAJ, et al.Mol Neurobiol. 2021 Sep;58(9):4323-4336. doi: 10.1007/s12035-021-02419-5. Epub 2021 May 18.Mol Neurobiol. 2021.PMID:34002346Free PMC article.
- Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences.McPartland JM, Glass M, Pertwee RG.McPartland JM, et al.Br J Pharmacol. 2007 Nov;152(5):583-93. doi: 10.1038/sj.bjp.0707399. Epub 2007 Jul 16.Br J Pharmacol. 2007.PMID:17641667Free PMC article.Review.
- Anti-citrullinated peptide antibody assays and their role in the diagnosis of rheumatoid arthritis.Aggarwal R, Liao K, Nair R, Ringold S, Costenbader KH.Aggarwal R, et al.Arthritis Rheum. 2009 Nov 15;61(11):1472-83. doi: 10.1002/art.24827.Arthritis Rheum. 2009.PMID:19877103Free PMC article.Review.
- Challenges in Predicting Recurrence After Resection of Node-Negative Non-Small Cell Lung Cancer.Thornblade LW, Mulligan MS, Odem-Davis K, Hwang B, Waworuntu RL, Wolff EM, Kessler L, Wood DE, Farjah F.Thornblade LW, et al.Ann Thorac Surg. 2018 Nov;106(5):1460-1467. doi: 10.1016/j.athoracsur.2018.06.022. Epub 2018 Jul 19.Ann Thorac Surg. 2018.PMID:30031845Free PMC article.
References
- Karpinski, K. F., S. Hayward, and H. Tryphonsa. 1987. Statistical considerations in the quantitation of serum immunoglobulin levels using the enzyme-linked immunosorbent assay (ELISA). J. Immunol. Methods 103:189-194. - PubMed
- Lindgren, B. W. 1960. Statistical theory. Macmillan, New York, N.Y.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical